10th Thailand Mathematical Olympiad Burapha University, Chonburi 14 May 2013

Day 1 Time: 4.5 hours

- 1. Find the largest integer that divides $p^4 1$ for all primes p > 4.
- 2. Let $\triangle ABC$ be a triangle with $\angle ABC > \angle BCA \ge 30^{\circ}$. The angle bisectors of $\angle ABC$ and $\angle BCA$ intersect CA and AB at D and E respectively, and BD and CE intersect at P. Suppose that PD = PE and the incircle of $\triangle ABC$ has unit radius. What is the maximum possible length of BC?
- 3. Each point on the plane is colored either red or blue. Show that there are three points of the same color that form a triangle with side lengths $1, 2, \sqrt{3}$.
- 4. Determine all monic polynomials p(x) having real coefficients and satisfying the following two conditions.
 - p(x) is nonconstant, and all of its roots are distinct reals
 - If a and b are roots of p(x) then a + b + ab is also a root of p(x).
- 5. Find a five-digit positive integer n (in base 10) such that $n^3 1$ is divisible by 2556 and which minimizes the sum of digits of n.
- 6. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$(x^{2} + y^{2})f(xy) = f(x)f(y)f(x^{2} + y^{2})$$

for all real numbers x, y.

10th Thailand Mathematical Olympiad Burapha University, Chonburi 15 May 2013

Day 2 Time: 4.5 hours

- 7. Let P_1, \ldots, P_{2556} be distinct points in a regular hexagon ABCDEF with unit side length. Suppose that no three points in the set $S = \{A, B, C, D, E, F, P_1, \ldots, P_{2556}\}$ are collinear. Show that there is a triangle whose vertices are in S and whose area is less than $\frac{1}{1700}$.
- 8. Let $p(x) = x^{2013} + a_{2012}x^{2012} + a_{2011}x^{2011} + \dots + a_1x + a_0$ be a polynomial with real coefficients with roots $-b_{1006}, -b_{1005}, \dots, -b_1, 0, b_1, \dots, b_{1005}, b_{1006}$, where $b_1, b_2, \dots, b_{1006}$ are positive reals with product 1. Show that $a_3a_{2011} \ge 1012036$.
- 9. Let $\Box ABCD$ be a convex quadrilateral, and let M and N be midpoints of sides AB and CD respectively. Point P is chosen on CD so that $MP \perp CD$, and point Q is chosen on AB so that $NQ \perp AB$. Show that $AD \parallel BC$ if and only if $\frac{AB}{CD} = \frac{MP}{NQ}$.
- 10. Find all pairs of positive integers (x, y) such that $\frac{xy^3}{x+y}$ is the cube of a prime.
- 11. Let m, n be positive integers. There are n piles of gold coins, so that pile i has $a_i > 0$ coins in it (i = 1, ..., n). Consider the following game:
 - Step 1. Nadech picks sets B_1, B_2, \ldots, B_n , where each B_i is a nonempty subset of $\{1, 2, \ldots, m\}$, and gives them to Yaya.
 - Step 2. Yaya picks a set S which is also a nonempty subset of $\{1, 2, \ldots, m\}$.
 - Step 3. For each i = 1, 2, ..., n, Nadech wins the coins in pile i if $B_i \cap S$ has an even number of elements, and Yaya wins the coins in pile i if $B_i \cap S$ has an odd number of elements.

Show that, no matter how Nadech picks the sets B_1, B_2, \ldots, B_n , Yaya can always pick S so that she ends up with more gold coins than Nadech.

12. Let ω be the incircle of $\triangle ABC$; ω is tangent to sides BC and AC at D and E respectively. The line perpendicular to BC at D intersects ω again at P. Lines AP and BC intersect at M. Let N be a point on segment AC so that AE = CN. Line BN intersect ω at Q(closer to B) and intersect AM at R. Show that the area of $\triangle ABR$ is equal to the area of $\Box PQMN$.

