8th Thailand Mathematical Olympiad Chiang Mai University, Chiang Mai 3 May 2011

Day 1 Time: 4 hours

- 1. Let $n \ge 3$ be a positive integer. Suppose that p and q are primes such that $p \mid n!$ and $q \mid (n-1)! 1$. Prove that p < q.
- 2. Find all functions f on the set of positive integers satisfying

$$f(2m+2n) = f(m)f(n)$$

for all positive integers m, n.

- 3. Given a triangle ABC which $\angle C = 90^{\circ}$, D is a point interior to $\triangle ABC$ (not on its sides), and lines AD, BD, CD meet BC, CA, AB at points P, Q, R respectively. Let M be the midpoint of PQ. Prove that if $\angle BRP = \angle PRC$, then MR = MC.
- 4. There are 900 students in an international school, including 59 international boys and 59 international girls. The students are partitioned into 30 classrooms, each having 30 students numbered from 1 to 30 so that either
 - any two international students in the same classroom do not have consecutive numbers, or
 - in all 30 classrooms, the student numbered 1 is a boy.

Prove that there are four international students A, B, C, D of the same gender such that A, B come from the same classroom, C, D come from the same classroom (but different from A, B), and the difference between A and B's numbers is equal to the difference between C and D's numbers.

- 5. Find all positive integers n such that $n = d(n)^4$, where d(n) denotes the number of positive divisors of n.
- 6. Let $x_1, x_2, ..., x_{2011}$ be real numbers in [0, 1] and let $m = \frac{1}{2011} (x_1 + x_2 + \dots + x_{2011})$ be their arithmetic mean. What is the maximum possible value of $\sum_{i=1}^{2011} (x_i m)^2$?

8th Thailand Mathematical Olympiad Chiang Mai University, Chiang Mai 4 May 2011

Day 2 Time: 4 hours

- 7. Let a, b, c, d be positive reals, and suppose that all roots of the equation $x^5 ax^4 + bx^3 cx^2 + dx = 1$ are real. Prove that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \leq \frac{3}{5}$.
- 8. Let G be the centroid of a triangle $\triangle ABC$, and suppose that the line AC is tangent to the circumcircle of $\triangle ABG$. Prove that $AB + BC \leq 2AC$.
- 9. Prove that $\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$ is never an integer when n > 1 is a positive integer.
- 10. Does there exist a function f on the set of positive integers satisfying

$$f(m + f(n)) = f(m) + f(n) + f(n+1)$$

for all positive integers m, n?

- 11. In triangle $\triangle ABC$, the incircle is tangent to the sides BC, CA and AB at X, Y and Z respectively. Let I_a, I_b and I_c be the excenters of $\triangle ABC$ opposite A, B and C respectively. Prove that the incenter of $\triangle ABC$, the centroid of $\triangle I_a I_b I_c$, and the orthocenter of $\triangle XYZ$ lie on the same line.
- 12. 7662 chairs are placed in a circle around the city of Chiang Mai; they are also marked with a label for either 1st, 2nd, or 3rd grade students, so that there are 2554 chairs labeled with each label. The following situations happen, in order:
 - (i) 2554 students each from the 1st, 2nd, and 3rd grades are given a ball as follows: 1st grade students receive footballs, 2nd grade students receive basketballs, and 3rd grade students receive volleyballs.
 - (ii) The students go sit in chairs labeled for their grade.
 - (iii) The students simultaneously send their balls to the student to their left, and this happens some positive number of times.

A labeling of the chairs is called *lin-ping* if it is possible for all 1st, 2nd, and 3rd grade students to now hold volleyballs, footballs, and basketballs respectively. Compute the number of *lin-ping* labelings.

