2nd Thailand Mathematical Olympiad¹ Ubon Ratchathani University, Ubon Ratchathani 3 May 2005

Day 1: Short Answer Time: 3 hours

Each problem is worth 1 point

- 1. Let $\Box ABCD$ be a trapezoid inscribed in a unit circle with diameter AB. If DC = 4AD, compute AD.
- 2. Let $\triangle ABC$ be an acute triangle, and let A' and B' be the feet of altitudes from A to BC and from B to CA, respectively; the altitudes intersect at H. If BH is equal to the circumradius of $\triangle ABC$, find $\frac{A'B}{AB}$.
- 3. Triangle $\triangle ABC$ is isosceles with AB = AC and $\angle ABC = 2 \angle BAC$. Compute $\frac{AB}{BC}$.
- 4. Triangle $\triangle ABC$ is inscribed in the circle with diameter *BC*. If AB = 3, AC = 4, and *O* is the *incenter* of $\triangle ABC$, then find $BO \cdot OC$.
- 5. A die is thrown six times. How many ways are there for the six rolls to sum to 21?
- 6. Find the number of positive integer solutions to the equation $(x_1+x_2+x_3)^2(y_1+y_2) = 2548$.
- 7. How many ways are there to express 2548 as a sum of at least two positive integers, where two sums that differ in order are considered different?
- 8. For each subset T of $S = \{1, 2, ..., 7\}$, the result r(T) of T is computed as follows: the elements of T are written, largest to smallest, and alternating signs (+, -) starting with + are put in front of each number. The value of the resulting expression is r(T). (For example, for $T = \{2, 4, 7\}$, we have r(T) = +7 4 + 2 = 5.) Compute the sum of r(T) as T ranges over all subsets of S.
- 9. Compute gcd $\left(\frac{135^{90}-45^{90}}{90^2}, 90^2\right)$.
- 10. What is the remainder when $\sum_{k=1}^{2005} k^{2005 \cdot 2^{2005}}$ is divided by 2^{2005} ?
- 11. Find the smallest positive integer x such that 2^{2548} divides $x^{2005} + 1$.
- 12. Find the number of even integers n such that $0 \le n \le 100$ and $5 \mid n^2 \cdot 2^{2n^2} + 1$.
- 13. Find all odd integers k for which there exists a positive integer m satisfying the equation

$$k + (k+5) + (k+10) + \dots + (k+5(m-1)) = 1372.$$

14. A function $f : \mathbb{Z}^+ \to \mathbb{Z}$ is given so that

$$f(m+n) = f(m) + f(n) + 2mn - 2548$$

for all positive integers m, n. Given that f(2548) = -2548, find the value of f(2).

15. A function $f:\mathbb{R}\to\mathbb{R}$ satisfy the functional equation

$$f(x+2y) + 2f(y-2x) = 3x - 4y + 6$$

for all reals x, y. Compute f(2548).

¹The contest was officially held under the name 2nd POSN Mathematical Olympiad.

- 16. Compute the sum of roots of $(2-x)^{2005} + x^{2005} = 0$.
- 17. For $a, b \ge 0$ we define $a * b = \frac{a+b+1}{ab+12}$. Compute $0 * (1 * (2 * (\dots (2003 * (2004 * 2005)) \dots))))$.
- 18. Compute the sum

$$\sum_{k=0}^{1273} \frac{1}{1 + \tan^{2548} \left(\frac{k\pi}{2548}\right)}.$$

- 19. Let P(x) be a monic polynomial of degree 4 such that for k = 1, 2, 3, the remainder when P(x) is divided by x k is equal to k. Find the value of P(4) + P(0).
- 20. Let a, b, c, d > 0 satisfy 36a + 4b + 4c + 3d = 25. What is the maximum possible value of $ab^{1/2}c^{1/3}d^{1/4}$?
- 21. Compute the minimum value of

$$\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha)$$

as α, β, γ ranges over the real numbers.

2nd Thailand Mathematical Olympiad² Ubon Ratchathani University, Ubon Ratchathani 4 May 2005

Day 2: Proof-based Time: 4 hours

Each problem is worth 7 points

- 1. A point A is chosen outside a circle with diameter BC so that $\triangle ABC$ is acute. Segments AB and AC intersect the circle at D and E, respectively, and CD intersects BE at F. Line AF intersects the circle again at G and intersects BC at H. Prove that $AH \cdot FH = GH^2$.
- 2. Let S be a set of three distinct integers. Show that there are $a, b \in S$ such that $a \neq b$ and $10 \mid a^3b ab^3$.
- 3. Does there exist a function $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that f(f(n)) = 2n for all positive integers n? Justify your answer, and if the answer is *yes*, give an explicit construction.
- 4. Let O_1 be the center of a semicircle ω_1 with diameter AB and let O_2 be the center of a circle ω_2 inscribed in ω_1 and which is tangent to AB at O_1 . Let O_3 be a point on AB that is the center of a semicircle ω_3 which is tangent to both ω_1 and ω_2 . Let P be the intersection of the line through O_3 perpendicular to AB and the line through O_2 parallel to AB. Show that P is the center of a circle Γ tangent to all of ω_1, ω_2 and ω_3 .
- 5. During the morning of the first day of class, 50 new students line up, and each student make friends with the students next to them; no other pairs of friendships are made. That same day, in the afternoon, a teacher wants the 50 students to line up again so that for every student S (except the first in line), at least one friend of S is in front of S. How many ways are there for the students to line up in the afternoon?
- 6. Let a, b, c be distinct real numbers. Prove that

$$\left(\frac{2a-b}{a-b}\right)^2 + \left(\frac{2b-c}{b-c}\right)^2 + \left(\frac{2c-a}{c-a}\right)^2 \ge 5.$$

²The contest was officially held under the name 2nd POSN Mathematical Olympiad.

