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1 General Information

§1.1 (Important) Notes of Confidentiality

This handout contains many problems from IMO Shortlist 2017, which must be kept con-

fidential until the end of IMO 2018. Do not disclose this handout to anyone except

the students who took the TST and instructors of Thailand TST Camp until the

end of IMO 2018.

§1.2 Thailand TST 2018 Information

Thailand TST is a set of exams held throughout the training camps in order to select six

students out of 25 to make the IMO team. This year, there were nine exams held in the

following dates.

• Day 1 : 25 December 2017

• Day 2 : 29 January 2018

• Day 3 : 30 January 2018

• Day 4 : 11 March 2018

• Day 5 : 19 March 2018

• Day 6 : 20 March 2018

• Day 7 : 27 April 2018

• Day 8 : 29 April 2018

• Day 9 : 30 April 2018

Each test had 3 problems to be solved in 4.5 hours time limit (more specifically from 9.00

am to 1.30 pm). Except the first test which had 4 problems instead of 3.
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CHAPTER 1. GENERAL INFORMATION 3

§1.3 Tests Comments

The subject distribution turns out to be the following. (Day 1 is not counted in the upper

table.)

Subject Distribution by Problem Number

D2 D3 D4 D5 D6 D7 D8 D9 Total

P1 N C A G G A C N AA CC GG NN

P2 C G C N N C A G A CCC GG NN

P3 A N G C A N G A AAA C GG NN

Subject Distribution by Difficulty

Subject Easy Med Hard

Algebra AAA A AAA

Combinatorics CCC CCC C

Number Theory NNN NNN N

Geometry GGG GG GG

§1.4 Acknowledgement

Thanks to all Thailand TST Camp instructors, who make the team selection tests possible,

and thanks to everyone to contribute solutions or help editing this handout.

Lead Author : Pitchayut Saengrungkongka

Co-authors : Jirayus Jinapong, Nithid Anchaleenukoon, Nitit Jongsawatsataporn, Papon

Lapate

Solution Contributors : Pitchayut Saengrungkongka, Jirayus Jinapong, Nitit Jongsawat-

sataporn, Nithid Anchaleenukoon, Thammadole Tansriwararat, Sithipont Cholsaipant, Krit

Boonsiriseth, Papon Lapate



2 Problems

§2.1 Day 1 Problems

Problem 1. Let x, y, z ∈ R+ such that xyz = 1. Prove that∑
cyc

1√
x+ 2y + 6

6
∑
cyc

x√
x2 + 4

√
y + 4

√
z
.

Problem 2. Let n < 2017 be a fixed positive integer. Exactly n of the vertices of a

regular 2017-gon are coloured red, and the other vertices are coloured blue. Prove that the

number of isosceles triangles which vertices are the same color only depend on n, but not the

configuration of red and blue points.

Problem 3. Do there exists an arithmetic progression with 2017 terms which each term is

not perfect p ower but the product of all 2017 terms is perfect power?

Problem 4. Let ∆ABC be an acute triangle with altitudes AA1, BB1, CC1 and orthocenter

H. Let K,L be the midpoints of BC1, CB1. Let `A be the external angle bisector of ∠BAC.

Let `B, `C be the lines through B,C and perpendicular to `A. Let `H be the line through H,

parallel to `A. Prove that the centers of circumcircle of ∆A1B1C1,∆AKL and the rectangle

formed by `A, `B, `C , `H are colinear.

§2.2 Day 2 Problems

Problem 1. Determine all positive integer n such that for any positive integers a1, a2, ..., an
which their sum is not divisible by n, there exists indices i such that each of

ai, ai + ai+1, ai + ai+1 + ai+2, ..., ai + ai+1 + ...+ ai+n−1

is not divisible by n where ai = ai−n for any i > n.

Problem 2. For any finite set M ⊂ Z+ and set A ⊆M , define

fM(A) = {x ∈M |x is divisible by odd number of elements of A}

4



CHAPTER 2. PROBLEMS 5

For any positive integer k, we call M k-colorable if and only if every subsets of M can be

assigned one of k colours so that for any A ⊆ M such that fM(A) 6= A, sets fM(A) and A

must be different color.

Determine the least positive integer k such that every finite set M ⊂ Z+ is k-colorable.

Problem 3. Let S be a finite set and let f : S → S be a function. Suppose that for any

function g : S → S, functions f ◦ g ◦ f and g ◦ f ◦ g are different. Prove that any elements

of S which is in the range of f must be in the range of f ◦ f .

§2.3 Day 3 Problems

Problem 1. Rectangle R which its sides are positive odd integer is tiled by some small

rectangles, each of them has integer sides. Prove that there is one of those small rectangles

which the four distances from one of its sides to the closest side of R are all odd or even.

Problem 2. Let O,H be the circumcenter and orthocenter of triangle ABC. Select points

P,Q on the line AO such that BP ⊥ AC and CQ ⊥ AB. Prove that circumcenter of triangle

PQH lies on one of the medians of triangle ABC.

Problem 3. Determine the smallest positive integer n such that there exists infinitely many

n-tuple of positive rational numbers (a1, a2, ..., an) such that

a1 + a2 + ...+ an,
1

a1
+

1

a2
+ ...+

1

an

are integer.

§2.4 Day 4 Problems

Problem 1. Let a1, a2, ..., an be positive integers, not all equal to 1. Let M = a1a2...an and

k = 1
a1

+ 1
a2

+ ...+ 1
an

. Suppose that k is integer. Prove that the polynomial

P (x) = M(x+ 1)k − (x+ a1)(x+ a2) · · · (x+ an)

has no positive real roots.

Problem 2. Let (x1, x2, ..., x100) be a permutation of {1, 2, ..., 100}. Define

S = {m | m is the median of {xi, xi+1, xi+2} for some i}.

Determine the minimum possible value of the sum of all elements of S.
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Problem 3. Let ABCC1B1A1 be a convex hexagon such that BA = BC and lines AA1, BB1

and CC1 share the same perpendicular bisector. Let ω denotes circumcircle of ∆ABC.

Diagonals AC1 and A1C meet at D. Circumcircles of triangle A1BC1 intersects ω at E 6= A.

Prove that lines BB1 and DE intersects on ω.

§2.5 Day 5 Problems

Problem 1. Let ABCDE be a convex pentagon such that AB = BC = CD, ∠EAB =

∠BCD and ∠EDC = ∠ABC. Prove that lines AC, BD and the line from E perpendicular

to BC are concurrent.

Problem 2. Determine all ordered pairs (p, q) of prime numbers which p > q and

(p+ q)p+q(p− q)p−q − 1

(p+ q)p−q(p− q)p+q − 1

is an integer.

Problem 3. Let n be a positive integer. Consider an n×n×n cube, which each of n3 cubes

is colored. Define a box as an n × n × 1 grid of cubes, in any of three possible orientation.

We also define the color-set of each box as the set of all color. Suppose that for any box

B1, there exists another two boxes B2,B3 such that B1,B2,B3 have different orientations but

having same color-set. Determine the maximum possible number of colors used.

§2.6 Day 6 Problems

Problem 1. Let ABC be a triangle with points E,F lies on segment BC. Let K,L be

points on segments AB,AC respectively such that EK ‖ AC, FL ‖ AB. The incircle of

triangles BEK,CFL touches segments AB,AC at X, Y respectively. Lines AC and EX

intersect at M and lines AB and FY intersects at N . Suppose that AX = AY . Prove that

MN ‖ BC.

Problem 2. Call a rational number short if it has terminating decimal. For a positive

integer m, call a positive integer t m-tastic if and only if there exists c ∈ {1, 2, ..., 2017}
which 10t−1

cm
is short but 10k−1

cm
is not short for any positive integer k < t.

Let S(m) be the number of all m-tastic integer. Determine the maximum possible value of

S(m) over all positive integer m.



CHAPTER 2. PROBLEMS 7

Problem 3. Let n > 3 be an integer. Let a1, a2, ..., an ∈ [0, 1] which a1 + a2 + · · ·+ an = 2.

Prove that √
1−
√
a1 +

√
1−
√
a2 + · · ·+

√
1−
√
an 6 n− 3 +

√
9− 3

√
6.

§2.7 Day 7 Problems

Problem 1. Determine all functions g : R → R which there exists strictly monotone

function f : R→ R such that

f(x+ y) = f(x)g(y) + f(y)

for all reals x, y.

Problem 2. Sir Alex plays the following game in a row of 9 cells. At the beginning, all cells

are empty. In each move, he performs exactly one of the following procedures.

i) He chooses one empty cells and inserts integer in form 2k for some integer k > 0.

ii) He chooses two (not necessarily adjacent) cells which have the same value 2k. He

replaces one of the two cells with 2k+1 and erase the number in other cell.

Suppose that eventually, Sir Alex ends up with exactly one cells containing number 2n for

some positive integer n while all other cells are empty. Determine (in terms of n) the maxi-

mum possible number of moves he could have made.

Problem 3. Let n be a fixed odd positive integer. For an odd prime p, define

ap =

p−1
2∑

k=1

{
k2n

p

}
p− 1

Prove that ap yields equal value for infinitely many primes p.

Notes : For any real number x, define {x} = x − bxc where bxc is the greatest integer not

exceeding x

§2.8 Day 8 Problems

Problem 1. Let n be a fixed positive integer. Define a chameleon as any word of 3n letters

which there are exactly n occurrences of letters a, b, c. Define a swap as a transposition of



CHAPTER 2. PROBLEMS 8

any two adjacent letters. Prove that for any chameleon X, there exists chameleon Y which

cannot be reached from X using fewer than 3n2/2 swaps.

Problem 2. Let a1, a2, a3, ... be the sequence of real numbers satisfying

an = − max
i+j=n

(ai + aj) for any n > 2017.

Prove that this sequence is bounded i.e., there exists real number M such that |an| < M for

any positive integer n.

Problem 3. Let ABCD be a convex quadrilateral which has an inscribed circle centered at

I. Let IA, IB, IC , ID be the incenters of triangles ABD,BCA,CBD,DAC respectively. The

common external tangents of circumcircles of triangles AIBID and CIBID intersects at X.

The common external tangents of circumcircles of triangles BIAIC and DIAIC intersects at

Y . Prove that ∠XIY = 90◦.

§2.9 Day 9 Problems

Problem 1. Let p > 2 be prime number. Alice and Bob play a game which both players

alternately make moves where Alice goes first. In each turn, player choose index i from the

set {0, 1, ..., p − 1} that no one choose before then choose ai from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
When all of the numbers a0, a1, ..., ap−1 have been chosen, the game is ended and the value

M = a0 + a1 · 10 + · · ·+ ap−1 · 10p−1

is computed. Alice’s goal is to make M divisible by p while Bob’s goal is to prevent this.

Prove that Alice has a winning strategy.

Problem 2. Let ω be the A-excircle of ∆ABC, which touches lines BC,CA,AB at D,E, F

respectively. Circumcircle of triangle AEF intersects line BC at P and Q. Let M be the

midpoint of AD. Prove that circumcircle of triangle MPQ is tangent to ω.

Problem 3. Let n > 3 be a positive integer. Call an n-tuple of real numbers (x1, x2, ..., xn)

shiny if and only if for any permutation (y1, y2, ..., yn) of those number, we have

y1y2 + y2y3 + ...+ yn−1yn > −1.

Determine the largest constant K = K(n) such that the inequality∑
16i<j6n

xixj > K

holds for all shiny n-tuple (x1, x2, ..., xn).



3 Solutions

§3.1 Day 1 Solutions

Problem 1. Let x, y, z ∈ R+ such that xyz = 1. Prove that∑
cyc

1√
x+ 2y + 6

6
∑
cyc

x√
x2 + 4

√
y + 4

√
z
.

Solution 1. (Jirayus Jinapong)

We claim that ∑
cyc

1√
x+ 2y + 6

6 1 6
∑
cyc

x√
x2 + 4

√
y + 4

√
z

From Cauchy-Schwarz Inequality, we get

∑
cyc

√
1

x+ 2y + 6

√
1 6
√

3

√∑
cyc

1

x+ 2y + 6

Next, by AM-HM Inequality, we get

∑
cyc

1

(x+ 2) + (y + 2) + (y + 2)
6
∑
cyc

1
x+2

+ 2
y+2

9

∑
cyc

1

x+ 2y + 6
6

∑
cyc

1
x+2

3

From ∑
cyc

1

x+ 2
=

∑
cyc

xy + 4
∑
cyc

x+ 12

9 + 2
∑
cyc

xy + 4
∑
cyc

x

9
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and ∑
cyc

xy > 3 3
√
x2y2z2 = 3

Therefore, ∑
cyc

1

x+ 2y + 6
6 1

On the other hand, From√
x2 + 4

√
y + 4

√
z =

√
x2 + 4 4

√
(y2)(xy)(xz)(yz) + 4 4

√
(z2)(xy)(xz)(yz)

>
√
x2 + (y2 + xy + xz + yz) + (z2 + xy + xz + yz)

> x+ y + z

Hence, ∑
cyc

x√
x2 + 4

√
y + 4

√
z
>
∑
cyc

x

x+ y + z
= 1

Therefore, ∑
cyc

1

x+ 2y + 6
6
∑
cyc

x√
x2 + 4

√
y + 4

√
z

as desired.

Solution 2. (Pitchayut Saengrungkongka)

We provide a more direct way in proving both inequalities in Solution 1. For the left inequal-

ity, as in Solution 1, it suffices to show that∑
cyc

1

x+ 2y + 6
6

1

3

Clearing denominators and expanding everything. This is equivalent to

3
∑
cyc

(x+ 2y + 6)(y + 2z + 6) 6 (x+ 2y + 6)(y + 2z + 6)(z + 2x+ 6)

⇐⇒ 324 +
∑
cyc

(21xy + 6x2 + 108x) 6 216 + 9xyz +
∑
cyc

(2x2y + 4y2x+ 42xy + 12x2 + 108x)

Or after cancellations and using xyz = 1,∑
cyc

(2x2y + 4y2x+ 21xy + 6x2) > 99

which is clear by AM-GM’ing each term.
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For the right inequality, substitute x = a2, y = b2, z = c2. Thus abc = 1. Moreover by

Holder’s inequality(∑
cyc

1√
a4 + 4b+ 4c

) 1
2
(∑

cyc

a2(a4 + 4b+ 4c)

) 1
4
(∑

cyc

a2

) 1
4

> a2 + b2 + c2

So we need to prove that∑
cyc

a2(a4 + 4b+ 4c) 6 (a2 + b2 + c2)3

⇐⇒
∑
cyc

(a6 + 4a3b2c+ 4a3bc2) 6 6a2b2c2 +
∑
cyc

(a6 + 3a4b2 + 3a2b4)

⇐⇒
∑
cyc

4a3b2c+ 4a3bc2 6 6a2b2c2 +
∑
cyc

(3a4b2 + 3a2b4)

⇐⇒
∑
cyc

(3a2b2 + 3a2c2 + 2a2bc)(b− c)2 > 0

which is true so we are done.

Problem 2. Let n < 2017 be a fixed positive integer. Exactly n of the vertices of a

regular 2017-gon are coloured red, and the other vertices are coloured blue. Prove that the

number of isosceles triangles which vertices are the same color only depend on n, but not the

configuration of red and blue points.

Solution 1. (Nitit Jongsawatsataporn)

We claim that the desired number is 3
2
n(2017 − n). To see this, pick one red vertex and

one blue vertex, use these two vertices to construct isosceles triangle in every possible ways.

Since gcd(2017, 6) = 1, there are exactly three ways to construct isosceles triangle using this

process but each isosceles triangle can be obtained in two different ways using this process.

Hence our claim is true and we are done.

Problem 3. Do there exists an arithmetic progression with 2017 terms which each term is

not perfect power but the product of all 2017 terms is perfect power?

Solution 1. (Sithipont Cholsaipant)

Such sequence exists. For convenience, let p = 2017 which is a prime. We claim that the

sequence p! · 1, p! · 2, ..., p! · p works.
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First, if n < p then νp(p! · n) = 1 therefore p! · n is not a perfect power. Furthermore, since

2011 is prime and ν2011(p · p!) = 1, p · p! is also not perfect power.

Finally, note that the product of all terms is

(p! · 1)(p! · 2)...(p! · p) = (p!)p+1

which is clearly perfect power hence we are done.

Solution 2. (Thammadole Tansriwararat)

By Green-Tao Theorem, there exists an arithmetic progression p1, p2, ..., p2017 consisting

only primes. Let P = p1p2...p2017 and take ai = Ppi for each i. It’s easy to see that each

term is not a perfect power, but the product of all terms is

(Pp1)(Pp2)...(Pp2017) = P 2018

which is perfect power so we are done.

Problem 4. Let ∆ABC be an acute triangle with altitudes AA1, BB1, CC1 and orthocenter

H. Let K,L be the midpoints of BC1, CB1. Let `A be the external angle bisector of ∠BAC.

Let `B, `C be the lines through B,C and perpendicular to `A. Let `H be the line through H,

parallel to `A. Prove that the centers of circumcircle of ∆A1B1C1,∆AKL and the rectangle

formed by `A, `B, `C , `H are colinear.

Solution 1. (Pitchayut Saengrungkongka)

Let P = `A ∩ `B, Q = `A ∩ `C , R = `H ∩ `B, S = `H ∩ `C . Let M be the midpoint of

BC and I be the incenter of ∆ABC. We claim that circles �(A1B1C1),�(AKL),�(PQRS)

pass through A1 and M which will immediately imply the problem.

Note that the first circle is nine-point circle of ∆ABC which is known to pass through M .

For the second circle, note that MB = MC = MB1 = MC1, therefore MK ⊥ AB,ML ⊥
AC. Hence ∠AKM = ∠ALM = 90◦ = ∠AA1M which implies A1,M pass through �(AKL)

as claimed.

Now we restrict attention to proving PQRSA1M is cyclic. To prove that PQA1M is cyclic,

let N be the midpoint of PQ. Therefore MN ⊥ PQ implying MN is the perpendicular

bisector of PQ. Hence MP = MQ. Now note that

(AI ∩BC, `A ∩BC;B,C) = −1 =⇒ (A, `A ∩BC;P,Q) = −1

=⇒ (A1A,A1M ;A1P,A1Q) = −1
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But ∠AA1M = 90◦, this implies that A1M is the external angle bisector of ∠PA1Q. Com-

bining with MP = MQ gives PQA1M is cyclic.

Now we prove that RSA1M is cyclic. To do that, it suffices to show that `H bisects ∠BHC

so that we can repeat the same logic as above. Now note that

](`H , BH) = ](`A, AC) + ](AC,BH) = −](`A, AB)− ](AB,CH) = −](`H , CH)

implying the desired bisection. Now suppose that circles�(PQA1M),�(RSA1M),�(PQRS)

are different. By radical axis theorem on these circles, lines PQ,RS,A1M are concurrent

which is absurd since PQ ‖ RS ∦ A1M . Hence PQRSA1M is concyclic implying the conclu-

sion.

§3.2 Day 2 Solutions

Problem 1. Determine all positive integer n such that for any positive integers a1, a2, ..., an
which their sum is not divisible by n, there exists indices i such that each of

ai, ai + ai+1, ai + ai+1 + ai+2, ..., ai + ai+1 + ...+ ai+n−1

is not divisible by n where ai = ai−n for any i > n.

Solution 1. (Pitchayut Saengrungkongka)

The answer is all prime number. To show that composite n does not work, take a prime

factor p of n and observe that

(a1, a2, ..., an) =

(
0,
n

p
,
n

p
, ...,

n

p

)
does not satisfy the problem’s condition. Now we proceed that all prime p works. Assume

that the sequence (a1, a2, ..., an) does not obey the problem’s condition. Therefore for any i,

we can find integer f(i) ∈ [i+ 1, i+ p] such that

p | ai + ai+1 + ...+ af(i)−1

Consider 1, f(1), f(f(1)), ..., f p(1). Observe that these integer are in [1, p2]. By Pigeonhole’s

principle, we can find integers 0 ≤ a < b ≤ p such that

p | f b(1)− fa(1)
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. Now by the definition of f ,

p |
fa+1(1)−1∑
i=fa(1)

ai +

fa+2(1)−1∑
i=fa+1(1)

ai +

fa+3(1)−1∑
i=fa+2(1)

ai + ...+

fb(1)−1∑
i=fb−1(1)

ai

since p divides each of the summation. This implies that

p |
fb(1)−1∑
i=fa(1)

ai =
f b(i)− fa(i)

p
(a1 + a2 + ...+ ap)

Therefore p2 | f b(i)− fa(i) but 0 < fa(i) < f b(i) ≤ p2, contradiction.

Problem 2. For any finite set M ⊂ Z+ and set A ⊆M , define

fM(A) = {x ∈M |x is divisible by odd number of elements of A}

For any positive integer k, we call M k-colorable if and only if every subsets of M can be

assigned one of k colours so that for any A ⊆ M such that fM(A) 6= A, sets fM(A) and A

must be different color.

Determine the least positive integer k such that every finite set M ⊂ Z+ is k-colorable.

Solution 1. (Linear Algebra, Krit Boonsiriseth)

Obviously, one color does not suffices. We claim that two colors suffices. Take the obvious

graph interpretion G where each vertex represents subsets A ⊆M and all edges connect pair

in form {A, fM(A)}. It suffices to prove that G has no odd cycles.

Let n = |M | and for convenience, denote f by fM . Let M = {x1, x2, ..., xn} where x1 > x2 >

... > xn Construct the n× n matrix T = [tij] over Z2 = Z/2Z which

tij =

0 where xi - xj
1 where xi | xj

Observe that all entries in the main diagonal are 1 and all entries below the main diagonal

are 0. We also represent A by row vector (an 1× n matrix) A = [ai] where

ai =

0 where xi /∈ A
1 where xi ∈ A

The merit of this representation is by using matrix multiplication, we can check that in Z2,

we have

f(A) = AT
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Armed with this interpretation, we will prove the following two claims.

Claim 1. f is injective

Proof. First, we prove that T has inverse T−1 by doing row operation.

The only 1 in the first row is at t11 so we can use this row to eliminate all 1’s in the first

column. Now the only 1 in the second column is at t22 so we can repeat this process. This

process continues until the matrix T is an identity matrix. So T has inverse.

Now suppose that f(A) = f(B) for some row vectors A,B, we get

AT = BT =⇒ ATT−1 = BTT−1 =⇒ A = B

as claimed.

By Claim 1, graph G is a union of disjoint cycles.

Claim 2. Let k = 2(n
2), then fk(A) = A for any row vector A.

Proof. Observe that fk(A) = TkA. Thus it suffices to show that Tk = I. Note that the set

of all n× n matrices M = [mij] with the following properties

• mii = 1 for any i ∈ {1, 2, ..., n}

• mij = 0 for any 1 6 i < j 6 n

form a group G with matrix multiplication. (It can be checked through linear map definition

of matrix.) Moreover |G| = k hence by Lagrange’s Theorem, Tk = I as desired.

Now Claim 2 implies length of any cycle must divides k = 2(n
2) so length of any cycle must

be power of two. Since there is no cycle with length 1, there is no odd cycles as desired.

Problem 3. Let S be a finite set and let f : S → S be a function. Suppose that for any

function g : S → S not the same as f , functions f ◦ g ◦ f and g ◦ f ◦ g are different. Prove

that any elements of S which is in the range of f must be in the range of f ◦ f .

Solution 1. (Papon Lapate)

Define S1 = S and Si+1 = Im(Si) and let n be the smallest integer such that Sn = Sn+1.

Now, let T1 = Sn and define Ti+1 to be the pre-image of Ti. It is easy to see that Si ⊆ Ti,

thus there exists smallest m such that Tm = S. Finally let T ′1 = T1 and T ′i+1 = Ti+1 − Ti. It

is suffice to show that m 6 2.

First, since Im(T ′1) = T ′1, there must exists bijection h : T ′1 → T ′1 such that f(x) = h(x) for

all x ∈ T ′1.
Now, suppose that m > 2, then we define g as follow:
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• if x ∈ T ′1 ∪ T ′2, then let g(x) = f(x).

• if x ∈ T ′i+2, then let g(x) = h−i(f i+1(x)).

It is easy to verify (and thus left as an exercise to the readers) that g is valid, not equivalent

to f and satisfied the condition f ◦ g ◦ f = g ◦ f ◦ g which is a contradiction. Hence m 6 2

and we are done.

§3.3 Day 3 Solutions

Problem 1. Rectangle R which its sides are positive odd integer is tiled by some small

rectangles, each of them has integer sides. Prove that there is one of those small rectangles

which the four distances from one of its sides to the closest side of R are all odd or even.

Solution 1. (Pitchayut Saengrungkongka)

Fix all corners of R to be (0, 0), (m, 0), (n, 0), (m,n). It’s easy to see that all vertices of

smaller rectangles are lattice point.

Imagine R as the m×n board. Color R in chess order so that all corners are black. It’s easy

to see that all rectangles which satisfy the problem’s condition are precisely all rectangles

which all four corners is black or equivalently, all rectangle which has black cells more than

white cells. But R has this property too hence we are done.

Problem 2. Let O,H be the circumcenter and orthocenter of triangle ABC. Select points

P,Q on the line AO such that BP ⊥ AC and CQ ⊥ AB. Prove that circumcenter of triangle

PQH lies on one of the medians of triangle ABC.

Solution 1. (Nithid Anchaleenukoon)

Let S be circumcenter of ∆PQH and M be midpoint of BC and D,E, F are feet of altitudes

from A,B,C in ∆ABC. Angle chasing reveals that

∠HPQ = ∠EPA = 90◦ − ∠OAC = 90◦ − ∠BAH = ∠B

But ∠DHC = ∠B so circumcircle of PQH tangent to AH so HS ‖ BC.

Now let S ′ be intersection point of AM and line perpendicular to AH at H. The homothety

centered at A taking H to D will send S ′, P, E to M,P ′, E ′ repectively, where E ′ is point
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BC such that DE ′ ⊥ AC and P ′ = DE ′ ∩AO. It’s now suffices to prove that DM = MP ′.

Because ∠E ′P ′A = ∠EPA = ∠B. So A,B,D, P ′, E are concyclic.

By angle chasing, BE ‖ DP ′, BP ′E = ∠EBC and ∠BEM = ∠EBC. So E ′, P,M collinear.

But MB = ME and BE ‖ DP , we are done.

Solution 2. (Pitchayut Saengrungkongka)

Let D,E, F be feet of altitudes from A,B,C of ∆ABC respectively. Let R = EF ∩BC and

let M be the midpoint of BC. Let ω be the circumcircle of ∆PQH which is centered at S.

By angle chasing, AH is tangent to ω (all angles in ∆PQH are easy to find). Now let AK

be other tangent to ω and note that by projection at H

−1 = (H,K;P,Q) = (D,HK ∩BC;B,C)

but (D,R;B,C) = −1, therefore H,K,R are colinear. By Brokard’s theorem on BCEF ,

HR ⊥ AM . Therefore HK ⊥ AM . But AS ⊥ HK hence we are done.

Problem 3. Determine the smallest positive integer n such that there exists infinitely many

n-tuple of positive rational numbers (a1, a2, ..., an) such that

a1 + a2 + ...+ an,
1

a1
+

1

a2
+ ...+

1

an

are integer.

Solution 1. The answer is n = 3. We first prove that n = 2 fails. Let a1 = a
b
, a2 = c

d
where

gcd(a, b) = gcd(c, d) = 1. Note that

a

b
+
c

d
=
ad+ bc

bd
∈ Z

therefore b | ad + bc =⇒ b | ad =⇒ b | d. Similarly d | b hence b = d. Since b
a

+ d
c
∈ Z,

repeating similar logic gives a = c therefore a1 = a2. It can be easily checked now that there

are only finitely many such tuples.

Now we proceed to give the construction for n = 3. Recall that the equation r2+s2+1 = 3rs

has infinitely solution r, s ∈ Z+ as (1, 2) is one of them and Vieta tells us that if (r, s) is

solution then so is (s, 3s− r). Now take

a1 =
1

rs
, a2 =

r

s
+ 1, a3 =

s

r
+ 1

It’s easy to check that a1 + a2 + a3 = 5 and 1
a1

+ 1
a2

+ 1
a3

= rs + 1 which are both integer.

Hence we are done.
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§3.4 Day 4 Solutions

Problem 1. Let a1, a2, ..., an be positive integers, not all equal to 1. Let M = a1a2...an and

k = 1
a1

+ 1
a2

+ ...+ 1
an

. Suppose that k is integer. Prove that the polynomial

P (x) = M(x+ 1)k − (x+ a1)(x+ a2) · · · (x+ an)

has no positive real roots.

Solution 1. (Jirayus Jinapong)

Assume that the polynomial P (x) has a positive real root r. By Bernoulli Inequality, we get

(r + 1)
1
ai > 1 +

r

ai
=⇒ ai(r + 1)

1
ai > (r + ai)

Thus,
n∏

i=1

ai(r + 1)
1
ai >

n∏
i=1

(r + ai) =⇒ M(r + 1)k −
n∏

i=1

(r + ai) > 0

The equality holds if and only if a1 = a2 = ... = an = 1, which contradicts the problem’s

condition. Thus

M(r + 1)k > (r + a1)(r + a2)...(r + an) =⇒ P (r) > 0,

impossible. Hence, the polynomial P (x) has no positive real roots as desired.

Problem 2. Let (x1, x2, ..., x100) be a permutation of {1, 2, ..., 100}. Define

S = {m | m is the median of {xi, xi+1, xi+2} for some i}.

Determine the minimum possible value of the sum of all elements of S.

Solution 1. (Jirayus Jinapong)

The answer is 1122 = 2 + 4 + 6 + ...+ 66, which can be archived by the permutation.

((100, 2, 1), (99, 4, 3), (98, 6, 5), ..., (68, 66, 65), 67).

Now we are left to prove the bound. Define med{a, b, c},min{a, b, c} as the median and the

lowest number of {a, b, c} respectively. Let yi = med{x3i−2, x3i−1, x3i} and ti = min{x3i−2, x3i−1, x3i}
for each i = 1, 2, ..., 33.
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It’s obvious that ti 6= yj, i, j ∈ {1, 2, ..., 33} and the desired sum is at least y1 + y2 + ...+ y33
Let z1, z2, ..., z33 be the permutation of y1, y2, ..., y33 in ascending order. We claim that

Claim: zi > 2i for any i = 1, 2, ..., 33.

Proof: It suffices to show that there are at least 2i− 1 numbers less than zi. But

z1, z2, ..., zi−1 < zi and t1, t2, ..., ti < zi

hence zi > 2i as claimed.

Hence, the sum of element in S is at least 2 + 4 + ...+ 66 = 1122 as desired.

Problem 3. Let ABCC1B1A1 be a convex hexagon such that BA = BC and lines AA1, BB1

and CC1 share the same perpendicular bisector. Let ω denotes circumcircle of ∆ABC.

Diagonals AC1 and A1C meet at D. Circumcircles of triangle A1BC1 intersects ω at E 6= A.

Prove that lines BB1 and DE intersects on ω.

Solution 1. (Pitchayut Saengrungkongka)

We begin with some easy observations. Let ` be the common perpendicular bisector and O

be the center of ω. Clearly D ∈ `. By Radical Axis on �(A1BC1),�(ABC),�(ACA1C1),

lines BE,AC,A1C1 are concurrent at T . By symmetry, T ∈ `.

Now let F = BB1 ∩ ω and let D′ = EF ∩ `. We have to prove that D′ = D, which we will

do by showing that ` externally bisects ∠BD′C.

Consider the circle γ = �(ED′T ). This circle is orthogonal to ω because

∠OED′ = 90◦ − ∠EBF = ∠BTD′

thus OE touches γ, implying the claimed orthogonality. Since T is foot of external bisector

of ∠AEC, circle γ must be E-Apollonius circle of ∆AEC. Since D′ ∈ γ, we get

AD′

D′C
=
AT

TC
=⇒ D′T externally bisects ∠AD′C

so we are done.

§3.5 Day 5 Solutions

Problem 1. Let ABCDE be a convex pentagon such that AB = BC = CD, ∠EAB =

∠BCD and ∠EDC = ∠ABC. Prove that lines AC, BD and the line from E perpendicular

to BC are concurrent.
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Solution 1. (Pitchayut Saengrungkongka)

Let P = AB ∩ CD, Q = BC ∩ ED, R = BC ∩ EA, T = AC ∩ BD. The angle conditions

imply that BDQP and CARP is cyclic. Combining with AB = BC = CD gives PC = CQ

and PB = BR.

Since AB = BC, line AT is parallel to angle bisector of ∠PBC so if we let I be the incenter

of ∆PBC, we get that BICT is parallelogram. Thus the foot K from T to BC is the contact

point of P -excircle of ∆PBC.

Since ∠EQR = ∠BPC = ∠ERQ, we get that ∆EQR is isosceles. Furthermore, length

chasing reveals that

QK = QC + CK = PC +
PB +BC − PC

2
=
QR

2

hence QK = KR =⇒ EK ⊥ QR. But TK ⊥ QR so we are done.

Problem 2. Determine all ordered pairs (p, q) of prime numbers which p > q and

(p+ q)p+q(p− q)p−q − 1

(p+ q)p−q(p− q)p+q − 1

is an integer.

Solution 1. (Pitchayut Saengrungkongka)

The answer is (p, q) = (3, 2) which is easy to verify. Now we restrict attention to proving

that there are only one. Manipulate the divisibility as

(p+ q)p−q(p− q)p+q − 1 | (p+ q)p+q(p− q)p−q − (p+ q)p−q(p− q)p+q

⇐⇒ (p+ q)p−q(p− q)p+q − 1 | (p+ q)p−q(p− q)p−q((p+ q)2q − (p− q)2q)
⇐⇒ (p+ q)p−q(p− q)p+q − 1 | (p+ q)2q − (p− q)2q

Thus we obtain the bound p 6 3q, which reduce the case q = 2 to a finite case-check. From

now, assume that p, q are odd. Let a = p+ q, b = p− q. We have the following claim.

Claim. Every prime divisor r of abba − 1 must be in form qk + 1 unless p ≡ ±1 (mod q).

Proof. We have

a2q ≡ b2q (mod r) =⇒ d = ordr

(a
b

)
= 1, 2, q, 2q

If d = 1, 2, then r | a2 − b2 = 4pq so r = 2, p, q. But 2 - abba − 1 so r = p, q.
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• If r = p, then

p | abba − 1 =⇒ qa(−q)b − 1 ≡ 0 (mod p) =⇒ p | q2q − 1

so d = ordp(q) = 1, 2, q, 2q. But p > q =⇒ p - (q − 1)(q + 1) so q | d. Hence

q | p− 1 =⇒ p ≡ 1 (mod q).

• If r = q, then

q | abba − 1 =⇒ q | pbpa − 1 =⇒ q | p2p − 1

so d = ordq(p) = 1, 2, p, 2p. But d 6 p − 1 < q so d = 1, 2. Hence q | p2 − 1 implying

p ≡ ±1 (mod q).

If d = q, 2q, then since d | r − 1, we have r ≡ 1 (mod q) as claimed.

Now suppose that every prime divisor r of abba − 1 is in form qk + 1, notice that

abba − 1 =
(
a

b
2 b

a
2 − 1

)(
a

b
2 b

a
2 + 1

)
.

Thus each factor must congruent to 1 (mod q), which is impossible.

Thus we must have the edge case p ≡ ±1 (mod q). By the bound p 6 3q, this reduces to

p = 2q ± 1.

• If p = 2q − 1, then we have

(3q − 1)q(q − 1)3q−1 − 1 | (3q − 1)2q − q2q

We have

(q − 1)3 > 2(3q − 1) =⇒ (q − 1)3q > 2q(3q − 1)q > (q − 1)(3q − 1)q

so (q − 1)3q−1 > (3q − 1)q, hence the left hand side is bigger, implying contradiction.

• If p = 2q + 1, then we have

(3q + 1)q(q + 1)3q+1 − 1 | (3q + 1)2q − q2q

Using some calculus, we can show that q3q+1 > (3q + 1)q thus the left hand side is

always bigger, this yields contradiction.

Having exhausted all cases, the only answer is (3, 2) as desired.

Problem 3. Let n be a positive integer. Consider an n×n×n cube, which each of n3 cubes

is colored. Define a box as an n × n × 1 grid of cubes, in any of three possible orientation.

We also define the color-set of each box as the set of all color. Suppose that for any box
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B1, there exists another two boxes B2,B3 such that B1,B2,B3 have different orientations but

having same color-set. Determine the maximum possible number of colors used.

Solution 1. (Author: Jirayus Jinapong Co-author: Nitit Jongsawatsataporn)

We claim that the answer is
n∑

i=1

i2

The problem is divided into 2 main parts.

Part 1: Bound the number of maximum color

The trick is to generalize the problem by allow the invisible color, which has the following

properties.

• It can be assigned to any cube. If it is assigned to a cube, then that cube cannot be

assigned any color anymore.

• It counts toward neither the total number of colors nor the color set of a box.

Now the induction is amusingly trivial. Clearly the 1 × 1 × 1 cube use at most one color.

Suppose that we color an (n + 1) × (n + 1) × (n + 1) cube which satisfies the generalized

problem’s condition. We can find three boxes B1,B2,B3, having different orientation and

having the same coloring set.

Now remove those three boxes, leaving with an n × n × n cube. Furthermore, change the

color of any unit cube which its color appeared in B1 to the invisible color. We lose at most

(n + 1)2 colors. Moreover, the new cube satisfies the generalized problem’s condition so the

n× n× n cube uses at most 12 + 22 + ...+ n2 cubes as desired.

Part 2: Construction of the cube

We’ll find the construction by induction. Let P (n) denote the assertion ”There exists a cube

that has exactly
∑n

i=1 i
2 colors.”

Base Case: is obvious because we can just give arbitrary color to the unit cube.

Induction Step: Assume that P (n) is true for some natural number n > 1. We’ll show that

there exists a (n + 1) × (n + 1) × (n + 1) cube satisfy the condition. Consider a n × n × n
cube C that satisfy the condition.

First, give the coordinates (i, j, k) to a unit cube which the ith, jth, kth cube from the side,

front, and top, respectively.

Without loss of generality, assume that the ith block in each orientation has the same color-

set (The ith block from the side, front, top orientation is the ith when count from the left

side, front, and top of the cube).

We’ll add 3n2 + 3n+ 1 cube to the first n×n×n cube to be (n+ 1)× (n+ 1)× (n+ 1) cube

under the following procedure.
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1. Paint (n+ 1, n+ 1, n+ 1) with color a1 which is not appear in C.

2. Paint (n+ 1, i, i) and (i, n+ 1, n+ 1) with color ai+1 which are not appear in C,

3. Paint (i, n+ 1, i) and (n+ 1, i, n+ 1) with color ai+n+1 which are not appear in C

4. Paint (i, i, n+ 1) and (n+ 1, n+ 1, i) with color ai+2n+1 which are not appear in C

5. Paint (n+ 1, i, j), (j, n+ 1, i), (i, j, n+ 1) with the same color total n2− n colors which

are not appear in C.

It’s not hard to show that the new cube satisfy the condition.

Hence, P (n+ 1) is true.

By Induction Principle, P (n) is true for all natural number n.

From two parts, the maximum color is
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

§3.6 Day 6 Solutions

Problem 1. Let ABC be a triangle with points E,F lies on segment BC. Let K,L be

points on segments AB,AC respectively such that EK ‖ AC, FL ‖ AB. The incircle of

triangles BEK,CFL touches segments AB,AC at X, Y respectively. Lines AC and EX

intersect at M and lines AB and FY intersects at N . Suppose that AX = AY . Prove that

MN ‖ BC.

Solution 1. (Pitchayut Saengrungkongka)

Since ∆XKE ∼ ∆XAM and ∆Y LF ∼ ∆Y AN , we get

AM

AN
=
AM

KE
· LF
AN
· KE
LF

=
XA

XK
· Y L
AY
· KE
LF

=
KE

KX
· LY
LF

.

Let the incircle of ∆BKE touches KE at Z so ∆BKE ∪ Z ∼ ∆FLC ∪ Y . Furthermore

both triangles are similar to ∆ABC. Hence

AM

AN
=
KE

KZ
· LY
LF

=
LC

LY
=
AB

AC

implying the conclusion.
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Problem 2. Call a rational number short if it has terminating decimal. For a positive

integer m, call a positive integer t m-tastic if and only if there exists c ∈ {1, 2, ..., 2017}
which 10t−1

cm
is short but 10k−1

cm
is not short for any positive integer k < t.

Let S(m) be the number of all m-tastic integer. Determine the maximum possible value of

S(m) over all positive integer m.

Solution 1. (Pitchayut Saengrungkongka)

The answer is 807 . First, we can made the assumption that gcd(m, 10) = 1. Call the

number c as chef of t. For convenience, let C = {n ∈ Z+ | n 6 2017, gcd(n, 10) = 1}

Note that if c is a chef of t, then c′ = c
2a5b

is also a chef of t. Thus WLOG, we can assume

that gcd(c, 10) = 1.

Now observe that if c ∈ C is a chef of t then gcd(cm, 10) = 1 so

cm | 10t − 1 but cm - 10k − 1 for any k < t =⇒ t = ordcm(10).

Thus each c ∈ C is a chef of a unique tastic number t. Hence S(m) 6 |C| = 807claimed.

Now we have to construct m which ordcm(10) are all distinct for each c ∈ C. To do that, we

enumerate primes p1 < p2 < ... < pk = 2017, disregarding 2, 5. And define

ai = νpi(10pi−1 − 1) for each i = 1, 2, ..., k

By Lifting The Exponent Lemma, we easily find that

νpi(a
n − 1) = ai + νpi(n) =⇒ ordpt(10) = pi

t−ai(pi − 1)

for any t > ai. Now for each i = 1, 2, ..., k, let bi = ai + 2018 and let m =
k∏

i=1

pi
bi . From

discussions above, we get

ordcm(10) = lcm{pici+2018(pi − 1)}

where ci = νpi(c). Since vpi(pj − 1) < 2018 for any i, j 6 k, we get

νpi(ordcm(10)) = ci + 2018 = νpi(c) + 2018

so for any prime p ∈ {p1, p2, ..., pk},

νp(ordc1m(10)) = νp(ordc2m(10)) ⇐⇒ νp(c1) = νp(c2).
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But this is true for arbitrary prime p which may divide some elements in C so the numbers

{ordcm(10) | c ∈ C} are distinct as desired.

Problem 3. Let n > 3 be an integer. Let a1, a2, ..., an ∈ [0, 1] which a1 + a2 + · · ·+ an = 2.

Prove that √
1−
√
a1 +

√
1−
√
a2 + · · ·+

√
1−
√
an 6 n− 3 +

√
9− 3

√
6.

Solution 1. (Official Solution, Modified by Jirayus Jinapong)

Let f : [0, 1] → [0, 1] defined as f(x) =
√

1−
√
x. f is convex on [0, 4

9
] and is concave on

[4
9
, 1].

Consider the set

S =

{
n∑

i=1

f(ai)
∣∣ n∑

i=1

ai = 2,∀i, ai ∈ [0, 1]

}
Since S is a bounded compact subset of R, it has a maximal element, which we will denote

by M .

Claim: M must be of the form

M = (n+ 1− a) · f(0) + f(2− at) + af(t)

for some integer 0 6 a 6 n− 1 and some real t such that t ∈ [4
9
, 1] and (2− at) ∈ [0, 4

9
].

Proof. First, we’ll show that M has at most one i ∈ {1, 2, ..., n} such that ai ∈ (0, 4
9
). Assume

the contrary, there exists two indices i, j such that ai, aj ∈ (0, 4
9
).

Case 1: ai + aj <
4
9
. WLOG, ai > aj. By Karamata’s Inequality

(ai + aj, 0) � (ai, aj) =⇒ f(ai) + f(aj) 6 f(ai + aj) + f(0)

thus replacing (ai, aj) with (ai + aj, 0) yields smaller value of M , contradiction.

Case 2: ai + aj > 4
9
. WLOG, ai > aj. By Karamata’s Inequality,(

4

9
, ai + aj −

4

9

)
� (ai, aj) =⇒ f(ai) + f(aj) 6 f

(
4

9

)
+ f

(
ai + aj −

4

9

)
thus replacing (ai, aj) with

(
4
9
, ai + aj − 4

9

)
yields the smaller value of M , contradiction.

From two cases, M has at most one ai such that ai ∈
(
0, 4

9

)
. Next, we’ll show that every ai

such that ai > 4
9

must have the same value.
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Let ai1 , ai2 , ..., aik ∈ [4
9
, 1] in descending order and a =

∑k
j=1 aij
k

. Then, by Karamata’s In-

equality,

(ai1 , ..., aik) � (a, ..., a) =⇒
k∑

j=1

f(aij) 6 kf(a).

Thus replacing (ai1 , ..., aik) with (a, a, ..., a) yields the smaller value of M so every ai which

ai > 4
9

must have the same value. Hence we can conclude that M must be of the form

M = (n+ 1− a) · f(0) + f(2− at) + af(t)

.

Back to the problem, it’s obvious that a 6 4.

Case 1: a = 4 It suffices to show that, for 4
9
6 t 6 1

2
, we have√

1−
√

2− 4t+ 4

√
1−
√
t 6 2 +

√
9− 3

√
6.

It’s direct to verify that the function g1(t) =
√

1−
√

2− 4t + 4
√

1−
√
t is increasing on[

4
9
, 1
2

]
. Thus, for t ∈

[
4
9
, 1
2

]
, g1(t) 6 g1(

1
2
) < 2 +

√
9− 3

√
6 as desired.

Case 2: a = 3 , it suffices to show that, for 14
27

6 t 6 2
3
, we have√

1−
√

2− 3t+ 3

√
1−
√
x 6 1 +

√
9− 3

√
6.

It is direct to verify that g2(t) =
√

1−
√

2− 3t + 3
√

1−
√
t is increasing on

[
14
27
, 2
3

]
. Thus,

for t ∈
[
14
27
, 2
3

]
, g2(t) 6 g2(

2
3
) = 1 +

√
9− 3

√
6 as desired.

Case 3: a = 2 , it suffices to show that, for 7
9
6 t 6 1, we have√

1−
√

2− 2t+ 2

√
1−
√
t 6

√
9− 3

√
6.

It is direct to verify that g3(t) =
√

1−
√

2− 2t + 2
√

1−
√
t is decreasing on

[
7
9
, 1
]
. Thus,

for t ∈
[
7
9
, 1
]
, g3(t) 6 g3(

7
9
) <

√
9− 3

√
6 as desired.

Having considered all the cases, we finish the proof.

Remark 1. In Solution 1, There are many ways to carry out the single-variable inequality

analyses (e.g. that g1(t) < 2 +
√

9− 3
√

6 for 4
9
6 t 6 1

2
. We omitted the proofs for these

single-variable results here. However in order for a student to obtain full marks, s/he needs

to provide complete proofs for these results.
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§3.7 Day 7 Solutions

Problem 1. Determine all functions g : R → R which there exists strictly monotone

function f : R→ R such that

f(x+ y) = f(x)g(y) + f(y)

for all reals x, y.

Solution 1. (Nithid Anchaleenukoon)

Let P (x, y) be the assertion f(x+ y) = f(x)g(y) + f(y).

P (0, y) =⇒ f(0)g(y) = 0. If f(0) 6= 0 then g(y) = 0 ∀y ∈ R =⇒ f(x+y) = f(y) ∀x, y ∈ R,

contradiction. Therefore f(0) = 0.

P (1, 0) =⇒ f(1) = f(1)g(0). But f(1) 6= 0 so g(0) = 1.

Since P (y, x) =⇒ f(x+ y) = f(y)g(x) + f(x). We get

f(x)g(y) + f(y) = f(y)g(x) + f(x) ∀x, y ∈ R
(g(x)− 1)f(y) = (g(y)− 1)f(x) ∀x, y ∈ R

Case 1. There exists a 6= 0 such that g(a) = 1.

So f(a)(g(y) − 1) = 0. But f(a) 6= 0 =⇒ g(y) = 1∀y ∈ R. There exist f(x) = kx ∀x ∈ R
satisfy the problem.

Case 2. There don’t exist x 6= 0 such that g(x) = 1. We get

g(x)− 1

f(x)
=
g(y)− 1

f(y)
∀x, y ∈ R− {0}

and because g(0) = 1. So g(x) = c · f(x) + 1 ∀x ∈ R when c = g(1)−1
f(1)

. Pluging this in P (x, y)

gives

f(x+ y) = c · f(x)f(y) + f(x) + f(y) ∀x, y ∈ R
c · f(x+ y) + 1 = (c · f(x) + 1)(c · f(y) + 1) ∀x, y ∈ R

g(x+ y) = g(x)g(y) ∀x, y ∈ R.

Since g(x) is monotone, g(x) = ekx ∀x ∈ R, k 6= 1 and there exist f(x) = ekx−1
c
∀x ∈ R

Hence g(x) = ekx, k ∈ R ∀x ∈ R are all functions which satisfy the problem’s condition.
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Problem 2. Sir Alex plays the following game in a row of 9 cells. At the beginning, all cells

are empty. In each move, he performs exactly one of the following procedures.

i) He chooses one empty cells and inserts integer in form 2k for some integer k > 0.

ii) He chooses two (not necessarily adjacent) cells which have the same value 2k. He

replaces one of the two cells with 2k+1 and erase the number in other cell.

Suppose that eventually, Sir Alex ends up with exactly one cells containing number 2n for

some positive integer n while all other cells are empty. Determine (in terms of n) the maxi-

mum possible number of moves he could have made.

Solution 1. (Pitchayut Saengrungkongka)

Replace 9 with arbitrary k. Let f(n, k) denote the maximum number of moves to reach the

situation where only 2n left on the board.

Obviously f(0, k) = f(n, 1) = 1. We prove the following recurrence.

Claim : f(n, k) = f(n− 1, k) + f(n− 1, k − 1) + 1 for any n, k which n > 2, k > 1.

Proof. Obviously, we can make at least two moves. Thus the final 2n must comes from using

move 2 with (2n−1, 2n−1). We have to do subtasks T1, T2 of constructing 2n−1.

The key observation is if we assume that T1 starts before T2, then T1 always take one cell to

store numbers. Thus T2 can use at most k−1 cells. Hence all moves come from the following.

• The moves from T1, which is at most f(n− 1, k).

• The moves from T2, which is at most f(n− 1, k − 1).

• The final move in combining two 2n−1’s.

Hence f(n, k) 6 f(n − 1, k) + f(n − 1, k − 1) + 1. Moreover, the equality holds if we

finish T1 before starting T2. Thus T2 can use the remaining k − 1 cells freely, implying the

conclusion.

Now we just have to solve the recurrence. To do that, we just simply guess and check. We

claim that

f(n, k) = 2

((
n

0

)
+

(
n

1

)
+ ...+

(
n

k − 1

))
− 1.
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This clearly satisfies the initial conditions f(n, 1) = f(0, k) = 1, so we just have to prove

that this satisfies the problem’s condition. Note that

f(n− 1, k) + f(n− 1, k − 1) + 1 = 2

(
k−1∑
i=0

(
n− 1

i

)
+

k−2∑
i=0

(
n− 1

i

))
− 1

= 2

(
k−1∑
i=0

(
n− 1

i

)
+

k−1∑
i=1

(
n− 1

i− 1

))
− 1

= 2

(
k−1∑
i=0

(
n− 1

i

)
+

(
n− 1

i− 1

))
− 1

= 2

(
k−1∑
i=0

(
n

i

))
− 1

= f(n, k)

Hence the answer is 2
((

n
0

)
+
(
n
1

)
+ ...+

(
n
8

))
− 1 and we are done.

Problem 3. Let n be a fixed odd positive integer. For an odd prime p, define

ap =

p−1
2∑

k=1

{
k2n

p

}
p− 1

Prove that ap yields equal value for infinitely many primes p.

Notes : For any real number x, define {x} = x − bxc where bxc is the greatest integer not

exceeding x

Solution 1. (Pitchayut Saengrungkongka)

We claim that p ≡ 1 (mod 4n) =⇒ ap = 1
4

which will finish the problem by Dirichlet’s

Theorem. First, we prove the following lemma.

Lemma : Equation x2n ≡ −1 (mod p) has a solution in (mod p).

Proof. Let g be a generator (mod p). Let x = g
p−1
4n , we get

x2n ≡ g
p−1
2 ≡ −1 (mod p)

as desired.
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Back to the main problem. Let T = {k2n (mod p) | k = 1, 2, ..., p− 1}. Since 2n | p− 1, it’s

well known that for any t ∈ T , the equation x2n ≡ t (mod p) has exactly 2n solutions in

(mod p). Thus each element of T is counted n times in the multiset {12n, 22n, ...,
(
p−1
2

)2n}.
Moreover, k2n ∈ T implies (kx)2n ≡ −k2n (mod p) where x is a solution from the Lemma.

So t ∈ T implies p− t ∈ T . Combining with above discussion, we get

ap =

p−1
2∑

k=1

k2n (mod p)

p(p− 1)

=
p
2
· p−1

2

p(p− 1)

=
1

4

as desired.

Remark 1. As Solution 1 shows, the condition n odd is extraneous.

§3.8 Day 8 Solutions

Problem 1. Let n be a fixed positive integer. Define a chameleon as any word of 3n letters

which there are exactly n occurrences of letters a, b, c. Define a swap as a transposition of

any two adjacent letters. Prove that for any chameleon X, there exists chameleon Y which

cannot be reached from X using fewer than 3n2/2 swaps.

Solution 1. (Nithid Anchaleenukoon)

First, define an inversion is pair of letters which is one of the following types.

• A pair of (b, a) which b is on the left of a.

• A pair of (c, a) which c is on the left of a

• A pair of (c, b) which c is on the left of b.

Define f : S → N where X is set of all chameleon with length 3n by f(X) is number of

inversion in chameleon X.

We see that if X swap one time,value of f(X) will change exactly 1 (either increase or
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decrease). Because if X = x1x2...x3n swap xi, xi+1,xi, xi+1 are still on the right of x1x2...xi−1
and on the left of xi+2, xi+3...x3n.

So when X using fewer than 3n2

2
swaps to chameleon Y , |f(X)− f(Y )| < 3n2

2
.

Define chameleons

M = aa...a︸ ︷︷ ︸
n

bb...b︸︷︷︸
n

cc...c︸ ︷︷ ︸
n

N = cc...c︸ ︷︷ ︸
n

bb...b︸︷︷︸
n

aa...a︸ ︷︷ ︸
n

.

Since f(M) = 0, f(N) = 3n2. It’s easy to see that 0 6 f(X) 6 3n2 ∀X ∈ S.So for every

X ∈ S, there exist Y ∈ {M,N} such that |f(X) − f(Y )| > 3n2

2
.This mean there exist a

chameleon Y which cannot be reached from X using fewer than 3n2/2 swaps.

Problem 2. Let a1, a2, a3, ... be the sequence of real numbers satisfying

an = − max
i+j=n

(ai + aj) for any n > 2017.

Prove that this sequence is bounded i.e., there exists real number M such that |an| < M for

any positive integer n.

Solution 1. (Nitit Jongsawatsataporn)

If this sequence contains only 0, this question is obvious. So we supposed this sequence is

not constant. Define local-maximum as a value of n such that |an| > |ai|∀i ∈ N, i < n. Call

a local maximum n positive if an > 0 and negative if an < 0.

Lemma 1. There exist at most one positive local maximum beyond a2017.

Proof. Since n > 2017 then there must exist i, j such that an = −ai − aj and i + j = n

moreover ai + aj is the highest value of any i + j. Supposed that there exists m < n such

that am > 0 then an = an = −maxi+j=n(ai + aj) < −(am + an−m) = −am − an−m
Case 1 an−m > 0 then an < 0, contradiciton.

Case 2 an−m < 0 then an = −am + |an−m| < |an−m| which contradicts the definition of local

maximum.

Lemma 2. If an < 0 and n > 2017 then |an| < 2 ·maxi<n(ai).

Proof. This is pretty obvious. There exists k, l which k + l = n and an = −(ak + al) hence

|an| = |ak + al| ≤ 2 max
i<n

(ai)

as desired.
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From lemma 1 we can choose either there exist local-maximum which is an > 0 or not. Let

m ∈ N which is greater than the positive local maximum (if exists). Suppose for contradiction

that this sequence is unbounded. We then define two more sequences.

• Define m < t1 < t2 < ... as a sequence of (negative) local-maximum.

• Defined m1,m2, ... be a sequence of m such that amj
= maxi<tj(ai)

From Lemma 2, The second sequence is infinite, and cannot be stationary. So consider the

lowest k such that mk > 2017. Let l be the lowest number such that aml
> amk

. Obviously,

ml > 2017 so by the definition of sequence we get that

0 < aml
= − max

i+j=ml

(ai + aj) 6 −(amk
+ aml−mk

) =⇒ aml−mk
6 −2× amk

Since ml−mk < ml then by definition of mk we get that amk
> maxi<ml−mk

(ai). By Lemma

2 we get that |aml−mk
| 6 2× amk

which makes |aml−mk
| = 2× amk

. In other word,

0 < aml
= − max

i+j=ml

(ai + aj) 6 −(amt + aml−mk
) = amk

.

which contradicts to definition of ml. Hence the sequence is bounded and we are done.

Problem 3. Let ABCD be a convex quadrilateral which has an inscribed circle centered at

I. Let IA, IB, IC , ID be the incenters of triangles ABD,BCA,CBD,DAC respectively. The

common external tangents of circumcircles of triangles AIBID and CIBID intersects at X.

The common external tangents of circumcircles of triangles BIAIC and DIAIC intersects at

Y . Prove that ∠XIY = 90◦.

Solution 1. (Pitchayut Saengrungkongka)

By a well known lemma (or simple side-chasing), incircles of ∆ABD, ∆CBD are tangent.

So BD ⊥ IAIC . Furthermore since

∠IABIC =
∠B
2

= ∠ABI

we get that ∠ICBD = ∠IABA = ∠IABD so {BI,BD} are isogonal w.r.t. ∠IABIC . But

BD ⊥ IAIC so the center OB of �(BIAIC) lies on BI. Similarly, the center OD of �(DIAIC)

lies on DI.

Since OBOD ⊥ IAIC ⊥ BD so OBOD ‖ BD. Hence

OBY

ODY
=
OBB

ODD
=
OBI

ODI

so IY externally bisects ∠OBIOD ≡ ∠BID. Similarly IX externally bisects ∠AIC.
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Now it suffices to prove that IX internally bisects ∠BID too, which is equivalent to {IA, IC}
are isogonal w.r.t. ∠BID. Finally, note by angle chasing that

∠AID + ∠BIC =

(
180◦ − ∠A

2
− ∠D

2

)
+

(
180◦ − ∠B

2
− ∠D

2

)
= 180◦

implying the desired isogonality so we are done.

§3.9 Day 9 Solutions

Problem 1. Let p > 2 be prime number. Alice and Bob play a game which both players

alternately make moves where Alice goes first. In each turn, player choose index i from the

set {0, 1, ..., p − 1} that no one choose before then choose ai from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
When all of the numbers a0, a1, ..., ap−1 have been chosen, the game is ended and the value

M = a0 + a1 · 10 + · · ·+ ap−1 · 10p−1

is computed. Alice’s goal is to make M divisible by p while Bob’s goal is to prevent this.

Prove that Alice has a winning strategy.

Solution 1. (Pitchayut Saengrungkongka)

We first eradicate the case p = 2, 5, which Alice just has to pick a0 = 0 in the first move.

Now let k = ordp(10), which clearly divides p− 1. Let l = p−1
k

. We split into two case.

Case 1 : k is even

Let t = k
2
. It’s easy to see that 10t ≡ −1 (mod p). Now let Alice split {a1, a2, ..., ap−1} into

p−1
2

pairs in form {an, an+t} for some n ∈ Z+. It is straightforward to check that such pairing

exists.

We define Alice’s strategy as follows. Let she picks a0 = 0 in her first move and makes

other moves so that the two values in the same pair are forced to be equal. Clearly the sum

contributed by pair {an, an+t} is

an(10n+t + 10n) ≡ 0 (mod p).

so Alice can force p |M as desired.

Case 2 : k is odd
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Since p is odd, l is even. Now let Alice split {a0, a1, ..., ap−1} into the following groups.

A1 = {a1, ak+1, a2k+1, ..., a(l−1)k+1}
A2 = {a2, ak+2, a2k+2, ..., a(l−1)k+2}

...

Ak = {ak, ak+k, a2k+k, ..., a(l−1)k+k}

Now define Alice’s strategy as follows. Pick a0 = 0 in her first move. Now whenever Bob

picks the digit a in which group, Alice respond by insert another 9 − a in the same group,

which is clearly possible since l is even. Clearly sum contributed by group An is

≡ 9 · l
2
· 10n (mod p)

Hence

M ≡ 9l

2
(10 + 102 + ...+ 10k) ≡ 9l

2
· 10(10k − 1)

10− 1
≡ 0 (mod p)

as desired.

Remark 1. This problem works well with arbitrary base b. Except the case p = 2 and b is

odd, which Bob can easily force a win.

Remark 2. The argument in Case 2 works well given only ` is even.

Problem 2. Let ω be the A-excircle of ∆ABC, which touches lines BC,CA,AB at D,E, F

respectively. Circumcircle of triangle AEF intersects line BC at P and Q. Let M be the

midpoint of AD. Prove that circumcircle of triangle MPQ is tangent to ω.

Solution 1. (Pitchayut Saengrungkongka)

Let IA be the center of ω, T is the second intersection of AD and ω. Let N be the midpoint

of DT . Since ∠AEIA = ∠AFIA = ∠ANIA = 90◦, we get that IA, N ∈ �(AEF ).

Now we claim that MPQT is cyclic. Indeed, simply observe that

DP ·DQ = DA ·DN = DM ·DT.

Now let R be the point on BC such that RT is tangent to ω. Since R is the polar of AD

w.r.t. ω, R must lie on EF by La Hire’s Theorem. Hence

RP ·RQ = RE ·RF = RT 2
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so RT also touches �(MPQ) hence we are done.

Solution 2. (Pitchayut Saengrungkongka)

Let IA be the center of ω and let N be the midpoint of AIA, which is the center of �(AEF ).

Notice that MN is A-midline of ∆AIAD so MN ⊥ BC =⇒ MP = MQ.

Claim. Circle Ω = �(M,MP ) is orthogonal to ω.

Proof. Let P1 be the reflection of P across M . Let X = DP1 ∩ IAP . Notice that

DP1 ‖ AP ⊥ PIA =⇒ ∠PXP1 = 90◦ =⇒ X ∈ Ω.

Moreover, IAX · IAP = IAD
2, implying the desired orthogonality.

We can finish the solution with two different ways.

• Apply the converse of Casey’s Theorem on degenerate circles M,P,Q and circle ω.

• Invert around Ω. Clearly it maps ω → ω, �(MPQ)→ PQ, which obviously touches ω

so we are done.

Problem 3. Let n > 3 be a positive integer. Call an n-tuple of real numbers (x1, x2, ..., xn)

shiny if and only if for any permutation (y1, y2, ..., yn) of those number, we have

y1y2 + y2y3 + ...+ yn−1yn > −1.

Determine the largest constant K = K(n) such that the inequality∑
16i<j6n

xixj > K

holds for all shiny n-tuple (x1, x2, ..., xn).

Solution 1. (Papon Lapate)

We claim that the answer is K(n) =
1− n

2
for all n > 3.

First, let (x1, x2, ..., xn) = (a, a, ..., a, a,− 1
2a

),we can see that this n-tuple is shiny and the

summation is equal to
(
n−1
2

)
a2 + 1−n

2
. Setting a→ 0 prove that K 6 1−n

2
. Now it suffices to

show that the inequality holds for K = 1−n
2

.

We will split into 2 cases.
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Case 1. There are exactly n
2

positive numbers and n
2

negative numbers.

WLOG let x1, x3, ...xn−1 < 0 and x2, x4, ...xn > 0. We also extend indices by xi = xi−n for

all i > n. Adding all cyclic variants of the assertion gives

y1y2 + y2y3 + ...+ yn−1yn + yny1 > −
n

n− 1
.

Plugging in (y1, y2, ..., yn) = (x1, x2k+2, x3, x2k+4, ..., xn−1, x2k+n) gives

x1(x2k + x2k+2) + x3(x2k+2x2k+4) + ...+ xn−1(x2k+n−2 + x2k+n) > − n

n− 1

Thus summing up from k = 0, 2, 4, ..., n gives∑
16i,j6n,2|i,2-j

xixj > −
n2

4(n− 1)
.

Hence ∑
16i<j6n

xixj >
∑

16i,j6n,2|i,2-j

xixj > −
n2

4(n− 1)
>

1− n
2

as desired.

Case 2. Number of positive and negative reals are different.

In this case, we can see that at least one of y1y2, y2y3, ..., yn−1yn, yny1 must be non-negative.

Hence

y1y2 + y2y3 + ...+ yn−1yn + yny1 > −1.

Summing all inequations of the previous form gives the desired result.
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