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Language: English

Day: 1

P1. A set of two distinct coprime integers {x, y} is said to be a Pythagorean if and only if

x2 + y2 is an integer square. Given a Pythagorean, in each move, one can either

(i) change the sign of a number in the Pythagorean, or

(ii) add an integer k to both elements in the Pythagorean so that it is still a Pythagorean.

Show that starting from each Pythagorean, it is possible to reach any Pythagorean in a finite

number of moves.

P2. Let a1, a2, a3, . . . be a nonincreasing sequence of positive real numbers such that

an > a2n + a2n+1 for all n > 1.

Show that there exist infinitely many positive integers m such that

2m · am > (4m− 3) · a2m−1.

P3. In a scalene triangle ABC, the incircle ω has center I and touches side BC at D. A circle

Ω passes through B and C and intersects ω at two distinct points. The common tangents to

ω and Ω intersect at T , and line AT intersects Ω at two distinct points K and L. Prove that

either KI bisects ∠AKD or LI bisects ∠ALD.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 2

P4. An n× n table is written on a square piece of cardboard. Knuffle draws some diagonals in

some of the n2 cells, then uses a knife to cut along the marked diagonals. To Knuffle’s surprise,

the resulting piece of cardboard is still connected. Show that at least 2n−1 cells were left uncut.

P5. Is there a nonempty finite set S of points on the plane that form at least |S|2 harmonic

quadrilaterals?

Note: a quadrilateral ABCD is harmonic if it is cyclic and AB · CD = BC ·DA.

P6. Determine all continuous functions f : R → R such that the set of functions g : R → R
satisfying

g(a)f(b) + g(b)f(a) 6 (a+ f(a))(b+ f(b)) for all a, b ∈ R

is finite but nonempty.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 1

J1. Let Z>1 denote the set of all integers greater than 1. Is there a function f : Z>1 → Z>1

such that

ff(n)(m) = mn

for all integers m,n greater than 1?

Note: for any positive integer k, fk(n) denotes the result of f being applied k times to n.

J2. Find all pairs (a, b) of positive integers such that (a+ 1)b−1 + (a− 1)b+1 = 2ab.

J3. There is a calculator with a display and two buttons: −1/x and x + 1. The display is

capable of displaying precisely any arbitrary rational numbers. The buttons, when pressed, will

change the value x displayed to the value of the term on the button. (The −1/x button cannot

be pressed when x = 0.)

At first, the calculator displays 0. You accidentally drop the calculator on the floor,

resulting in the two buttons being pressed a total of N times in some order. Prove that you

can press the buttons at most 3N times to get the display to show 0 again.

Note: partial credit will be given for showing a bound of cN for a constant c > 3.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 2

J4. A sequence a1, a2, . . . of positive integers satisfies

an =
√

(n+ 1)an−1 + 1 for all n > 2.

What are the possible values of a1?

J5. A positive integer n > 2 is chosen, and each of the numbers 1, 2, . . . , n is colored red or

blue. Show that it is possible to color each subset of {1, 2, . . . , n} either red or blue so that each

red number lies in more red subsets than blue subsets, and each blue number lies in more blue

subsets than red subsets.

J6. Determine all positive reals r such that, for any triangle ABC, we can choose points

D,E, F trisecting the perimeter of the triangle into three equal-length sections so that the area

of 4DEF is exactly r times that of 4ABC.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points
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Solutions

P1. A set of two distinct coprime integers {x, y} is said to be a Pythagorean if and only if

x2 + y2 is an integer square. Given a Pythagorean, in each move, one can either

(i) change the sign of a number in the Pythagorean, or

(ii) add an integer k to both elements in the Pythagorean so that it is still a Pythagorean.

Show that starting from each Pythagorean, it is possible to reach any Pythagorean in a finite

number of moves.

Proposed by talkon

Solution (1: introducing z). We note that if x2 + y2 = z2, then k0 = 2z − 2x− 2y satisfy

(x+ k0)
2 + (y + k0)

2 = (z + k0)
2,

therefore the move {x, y} → {x + k0, y + k0} is valid. Furthermore, if x, y, z are positive then

2z > x+ y >
√
x2 + y2 = z so

−z < z + k0 = 3z − 2x− 2y < z.

As long as x, y 6= 0, we can make x, y, z positive and then use {x, y} → {x + k0, y + k0} to

reduce the value of z. As z cannot decrease indefinitely, we must reach a state where one of x, y

is 0, and that is only possible when {x, y} = {1, 0}. Therefore, starting from any Pythagorean

{x, y}, it is possible to reach {1, 0}, from which we can apply the moves in reverse to get to any

Pythagorean {x′, y′}. �

Solution (2: Euclid’s formula). Note that moves of type (i) allows us to ignore signs of numbers

in a Pythagorean. Define [u, v] = {u2 − v2, 2uv}. Euclid’s formula says that each Pythagorean

{x, y} is equal to [u, v] for some coprime nonnegative u, v with u odd and v even, modulo signs.

The identity

(a2 − b2)−
(
(a− 2b)2 − b2

)
= 2ab−

(
− 2(a− 2b)b

)
implies that the moves [u, v] → [|u− 2v|, v] and [u, v] → [u, |v − 2u|] are valid. Applying these

moves repeatedly, reducing u when u > v and v when v > u, we can reduce each Pythagorean

[u, v] to [1, 0], then we can apply the moves in reverse to go from [1, 0] to any Pythagorean

[u′, v′]. �
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P2. Let a1, a2, a3, . . . be a nonincreasing sequence of positive real numbers such that

an > a2n + a2n+1 for all n > 1.

Show that there exist infinitely many positive integers m such that

2m · am > (4m− 3) · a2m−1.

Proposed by talkon

Solution (1: telescope). Assume for the sake of contradiction that 2m · am 6 (4m− 3) · a2m−1
for all m > N . Replacing m by m+ 1 gives

a2m+1 >
2(m+ 1)

4m+ 1
am+1.

For each n > N and k > 0, we can repeatedly apply the above for m = n, 2n, . . . , 2k−1n, getting

a2kn+1 >
2(�����

2k−1n+ 1)

(2k+1n+ 1)
· 2(�����

2k−2n+ 1)

(2kn+ 1)
· · · · · 2(2n+ 1)

����8n+ 1
· 2(n+ 1)

����4n+ 1
· an+1

=
2k(n+ 1)(2n+ 1)

(2kn+ 1)(2k+1n+ 1)
· an+1

=
(n+ 1)(2n+ 1)

m
·
(

1

2kn+ 1
− 1

2k+1n+ 1

)
· an+1

Therefore, for all n > N ,

an > a2n+1 + a2n

> a2n+1 + a4n+1 + a4n

> · · ·

>
∞∑
k=1

a2kn+1

> an+1 ·
(n+ 1)(2n+ 1)

n

∞∑
k=1

(
1

2kn+ 1
− 1

2k+1n+ 1

)
= an+1 ·

n+ 1

n
.

Hence

an > an+1 ·
n+ 1

n
> · · · > a2n−1 ·

2n− 1

����2n− 2
·�

���2n− 2

����2n− 3
· · · · ·�

��n+ 1

n
> a2n−1 ·

4n− 3

2n
,

which is the desired contradiction. �

Solution (2: iterative bound). Suppose for the sake of contradiction that an 6 4m−3
2m · a2m−1

for all big enough n, say, n > N .

We will prove, by induction on k, that

an
an−1

6
n− 1 + 1

2k

n

for all integers n > N and nonnegative integer k.
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• Base case: k = 0. Since {an} is decreasing,
an
an−1

6 1 =
n− 1 + 1

20

n
for all n > N .

• Inductive step: Assume
an
an−1

6
n− 1 + 1

2k

n
for all n > N .

In particular, replacing n with 2n− 1 > N gives

a2n−1
a2n−2

6
2n− 2 + 1

2k

2n− 1

which, since an−1 = a2n−1 + a2n, implies

a2n−1 6
2n− 2 + 1

2k

4n− 3 + 1
2k

· an−1,

therefore

an 6
4n− 3

2n
·

2n− 2 + 1
2k

4n− 3 + 1
2k

· an−1 6
n− 1 + 1

2k+1

n
· an−1,

completing the inductive step.

Clearly it follows that for all n > N , an
an−1

6 n−1
n . Hence

a2n−1
an

=
a2n−1
a2n−2

· a2n−1
a2n−2

· · · · · an+1

an
6

2n− 2

2n− 1
· 2n− 3

2n− 2
· · · · · n

n+ 1
=

n

2n− 1

so 2n · an > (4n− 2)a2n−1 > (4n− 3)a2n−1, which is the desired contradiction. �

Comments. As seen in Solution 1, the decreasing condition is superfluous and not actually needed. If

the condition is removed, it is possible to modify Solution 2 by adding another iterative bound: that
an
an−1

< 1 +
1

2k
for all integers n > N and nonnegative integer k.

• Base case: k = 0. We have

an−1 = a2n−2 + a2n−1 > a2n−1 >
2n

4n− 3
an >

1

2
an

for all n > N , so
an
an−1

< 2 = 1 +
1

20
.

• Inductive step: Assume
an
an−1

< 1 +
1

2k
for all n > N .

Replacing n with 2n− 1 > N gives
a2n−1

a2n−2
< 1 +

1

2k
, which, since an−1 = a2n−1 + a2n, implies

a2n−1 <
2k + 1

2k+1 + 1
· an−1,

therefore

an <
4n− 3

2n
· 2k + 1

2k+1 + 1
· an−1 <

2k+1 + 2

2k+1 + 1
· an−1 <

(
1 +

1

2k+1

)
an−1,

completing the inductive step. �
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P3. In a scalene triangle ABC, the incircle ω has center I and touches side BC at D. A circle

Ω passes through B and C and intersects ω at two distinct points. The common tangents to

ω and Ω intersect at T , and line AT intersects Ω at two distinct points K and L. Prove that

either KI bisects ∠AKD or LI bisects ∠ALD.

Proposed by talkon and ThE-dArK-lOrD

Solution (1: theorem medley). We divide the proof into two steps.

Step 1. We show that either KI bisects ∠BKC or LI bisects ∠BLC.

Construct the circle Γ tangent to AB,AC and Ω internally; let K ′ be the tangency point

of Γ and Ω. By Monge’s Theorem, K ′ is on line AT , so K ′ ∈ {K,L}. By Protassov’s

Theorem1, K ′I bisects ∠BK ′C, so either KI bisects ∠BKC or LI bisects ∠BLC. Without

loss of generality, assume the former.

Step 2. If KI bisects ∠BKC then it also bisects ∠AKD.

Let the tangents from K to ω meet ω at X,Y . The Dual of Desargue’s Involution

Theorem on the degenerate quadrilateral ABDC with inscribed circle ω says that there is an

involution swapping {X,Y }, {B,C}, {A,D}. As KI bisects ∠XKY and ∠BKC, this involution

is the reflection over
←→
KI, so KI also bisects ∠AKD. �

Solution (2: alternatives). We provide alternative ways for both of the steps above.

Step 1. We show that either KI bisects ∠BKC or LI bisects ∠BLC.

Define coordinates so that the midpoint of BC is (0, 0), B,C lie on the x-axis, ω is above

BC, and the radius r of ω is 1. Let F, J ;M,N be the bottommost, topmost points of ω; Ω

respectively. Let K ′ be the second intersection of NI and Ω. Clearly K ′I bisects ∠BK ′C, so

it suffices to show that K ′ lies on
←→
AT .

Let B = (−b, 0), C = (b, 0), N = (0, n), F = (f, 0). By power-of-point, M = (0,−b2/n).

Since r = 1, I = (f, 1) and J = (f, 2).

Finding A: the homothety sending ω to the A-excircle ωA is centered at A and sends J to

L′ = (0, f). For the moment, define x, y, z as in the Ravi substitution, that is, x, y, z are the

lengths of tangents from A,B,C to ω respectively. Also let ra be the radius of ωA. We know

that 1 = r = 4
s =

√
xyz

x+y+z , so the scaling factor of the homothety is ra
r = x+y+z

x = yz = b2−f2

as y = b+ f and z = b− f . Therefore, (A− L′) = (b2 − f2)(A− J), that is,

A =
1

b2 − f2 − 1

(
(b2 − f2) · J − L′

)
=

1

b2 − f2 − 1
·
(
f(b2 − f2 + 1), 2(b2 − f2)

)
.

Finding T : consider another homothety, this time sending ω to Ω. This is centered at T and

sends J to N . The radius R of Ω is 1
2

(
n+ b2

n

)
, which is also the scaling factor. Therefore,

(T −N) = 1
2

(
n+ b2

n

)
(T − J), that is,

T =
2

n+ b2

n − 2

(
n+ b2

n

2
· J −N

)
=

1

b2 + n2 − 2n

(
f(b2 + n2), 2b2

)
.

1Protassov’s Theorem: Given 4ABC with incenter I. A circle Ω passes through B,C. Suppose that a

circle Γ is tangent to AB, AC, and to Ω internally at P . Then PI bisects ∠BPC.
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Finding K ′: we simply need to project M onto
←→
NI. The equation for

←→
NI is y = n−1

f · x+ n, so

the equation of the line through M perpendicular to
←→
NI is y = f

1−n ·x−
b2

n . Solving the system

of equation gives

K ′ =
1

n ((n− 1)2 + f2)

(
(n− 1)f(b2 + n2), n2f2 − b2(n− 1)2

)
.

Finale: Using the shoelace formula and multiplying by appropriate constants, we want to show

that

det

∣∣∣∣∣∣∣
b2 − f2 − 1 f(b2 − f2 + 1) 2(b2 − f2)
b2 + n2 − 2n f(b2 + n2) 2b2

n
(
(n− 1)2 + f2

)
(n− 1)f(b2 + n2) n2f2 − b2(n− 1)2

∣∣∣∣∣∣∣ = 0.

This can be verified by direct computation or by using row/column operations to ease the

computation. The following is one way to do it. Let c1, c2, c3 denote the columns. Modify the

columns by c2 → c2
f (it’s clear that if f = 0 the determinant vanishes) then c3 → c3−c1−c2

n−n2 (same

reasoning) gives ∣∣∣∣∣∣∣
b2 − f2 − 1 b2 − f2 + 1 0

b2 + n2 − 2n b2 + n2 2

n
(
(n− 1)2 + f2

)
(n− 1)(b2 + n2) b2 − f2 − 1 + 2n

∣∣∣∣∣∣∣ .
Taking c1 → −c1 + c2 gives∣∣∣∣∣∣∣

2 b2 − f2 + 1 0

2n b2 + n2 2

b2n− b2 − f2n+ n2 − n (n− 1)(b2 + n2) b2 − f2 − 1 + 2n

∣∣∣∣∣∣∣ .
If the determinant were to be 0, (b2 − f2 + 1)c1 − 2c2 needs to be a multiple of c3, say, mc3.

The second row forces m to be n(b2 − f2 + 1) − (b2 + n2) = b2n − b2 − f2n − n2 + n. Finally,

we check that

(b2 − f2 + 1)(b2n− b2 − f2n+ n2 − n)− (b2n− b2 − f2n− n2 + n)(b2 − f2 − 1 + 2n)

= 2(n2 − n)(b2 − f2 + 1)− 2(n− 1)(b2n− b2 − f2n− n2 + n)

= 2(n− 1)(nb2 − f2n+ n− b2n+ b2 + f2n+ n2 − n)

= 2(n− 1)(b2 + n2)

as expected.

Step 2. If KI bisects ∠BKC then it also bisects ∠AKD.

Let M and N denote the midpoints of arc BC containing and not containing K respectively.

Let MK intersects BC at H, MR intersects Ω again at P , and AT intersects Ω at Q 6= K.

Let PI intersects Ω again at P ′. Note that K, I,N collinear and that H,B,C collinear in this

order.

We have ∠IKH = 90◦ = ∠IRH, so IRKH is cyclic. Let κ denote its circumcircle. Also,

we have ∠KIR = ∠KNM = ∠KPM =⇒ P ∈ (KRI) = κ. So, ∠RHI = ∠RPI = ∠MPP ′.
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Also, since HC ⊥ MN and NK ⊥ MH, we get ∠NHR = ∠KNM . Hence, we get ∠KHI =

∠KNP ′ = 180◦ − ∠MP ′ =⇒ HI ‖MP ′.

Applying Pascal’s theorem on six points Q,K,N,M,P, P ′ gives us Q,O, P ′ collinear, so

P ′ is the antipode of Q in Ω.

As IH ‖ MP ′, IH ⊥ MQ. Homothethy gives us IH ⊥ RS where S is the intersection of

segment AT and ω. Not hard to get that S is the intersection point of second tangent from H

to ω. Hence ∠HSI = 90◦ =⇒ S ∈ κ. Since IR = IS, we are done. �

Comments. 1. The problem was proposed without knowledge of Protassov’s Theorem; the

original version of the problem was:

Let �ABCD be a convex quadrilateral such that the incircle of 4ABC is tangent to the circumcir-

cle of 4ADC at a point on line BD. Show that the incenter of 4ABC lies on the angle bisector

of ∠ADC.

but this turned out to known as a variation on Protassov’s Theorem, so we opted for the

generalization. Some possible proofs of this include:

• Inversion around the incircle of 4ABC and possibly another
√
bc-inversion

• Desargue’s Involution Theorem on ABCD and ω

• The coordinate bash presented above

2. If T is replaced by the insimilicenter instead, and K is chosen on the arc BC not containing D, it

still holds true that KI bisects ∠BKC and ∠AKB. We believe that this can be shown using a

similar method the solutions presented.

3. Finally, there is another generalization which seems to be true, but we were unable to prove:

Let �ABCD be a convex quadrilateral such that the incircle of 4ABC is tangent to the circum-

circle of 4ADC at a point K. Then any two of the following implies the other:

• K lies on BD

• The tangency point T of the incircle of 4ADC and AC lies on BD

• The incircle of 4ADC is tangent to the circumcircle of 4ABC
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P4. An n×n table is written on a square piece of cardboard. Knuffle draws some diagonals in

some of the n2 cells, then uses a knife to cut along the marked diagonals. To Knuffle’s surprise,

the resulting piece of cardboard is still connected. Show that at least 2n − 1 cells were left

uncut.

Proposed by ThE-dArK-lOrD

Solution (1: graph on vertices). If a cell has two cut diagonals, pretend only one is cut–the

cardboard would still be connected. Construct a graph G with (n−1)2 +1 vertices: the (n−1)2

interior vertices of the square plus an extra vertex for the whole boundary. Draw edges joining

two vertices iff the diagonal connecting the two are cut. As the cardboard is still connected,

G contain no cycles. Therefore the number of cuts made, i.e. the number of edges in G, is

6 (n− 1)2. Hence at least n2 − (n− 1)2 = 2n− 1 cells were left uncut. �

Solution (2: graph on edges). Consider a graph with the 2n(n+1) edge segments of the square

as vertices. For each cut square, draw two edges joining pairs of edge segments on the same

side. For each uncut square, draw three edges joining the four edge segments. If there are k

uncut squares, G will have 2n2 + k edges. However, G must be connected, so

k > 2n(n+ 1)− 1− 2n2 = 2n− 1. �

Solution (3: graph on regions). Consider a graph where the vertices are the parts of the table

separated by gridlines and drawn diagonals, and there is an edge connecting two vertices iff the

two parts share a section of a gridline.

Observe that each cell with a drawn diagonal increases |V | by at least 1, so if t is the number

of cut cells then |V | > n2 + t. Also, as there are 2n(n− 1) sections of gridline inside the table,

|E| is exactly 2n(n− 1). Finally, as the piece of cardboard is still connected after diagonal cuts,

G is connected, so

n2 + t = |V | 6 |E|+ 1 = 2n2 − 2n+ 1,

hence t 6 n2 − 2n+ 1 �

Solution (4: boundary components). We claim that if exactly one diagonal is cut in all n2

cells of the table, then the table is cut into at least 2n pieces. To show that, consider the graph

where the 2n(n+1) gridline sections are the vertices, and two vertices are connected by an edge

iff they lie on the same half-cell. In this graph, vertex has degree exactly two except the 4n

boundary vertices which have degree one. Each component of this graph can only contain two

boundary vertices, so there are at least 4n/2 = 2n components.

From our claim, the problem is straightforward: by allowing cells to have more than one cut

diagonal, the number of components cannot be reduced, and for each uncut cell, the number

of components can decrease by at most one, so in order to have a single component, at least

2n− 1 cells must be uncut. �

Comments. The problem also holds for rectangular tables, where for an m×n table, at least m+n−1

cells must be left uncut. All solutions presented above can be easily modified for the rectangular case.
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P5. Is there a nonempty finite set S of points on the plane that form at least |S|2 harmonic

quadrilaterals?

Note: a quadrilateral ABCD is harmonic if it is cyclic and AB · CD = BC ·DA.
Proposed by talkon

Answer. Yes.

Solution. Define points Pi = (i, 0) for i = 0, . . . , N − 1. We claim that for sufficiently large

N , the set of N points obtained by inverting {P0, . . . , PN−1} around any point not on x-axis

satisfies the condition. Since the cross-ratio of any four points is invariant under inversion, it

suffices to show that there are at least N2 good tuples (a, b, c, d) with 0 6 a < b < c < d 6 N

such that (Pa, Pc;Pb, Pd) = −1.

Call a good tuple (a, b, c, d) primitive if a = 0 and gcd(b, c, d) = 1. Note that for each

good tuple (p, q, r, s) there is a unique primitive tuple (a, b, c, d) for which there exists integers

t > 1, k > 0 satisfying (p, q, r, s) = (ta+ k, tb+ k, tc+ k, td+ k). Also, for each primitive tuple

(a, b, c, d), the tuple (ta+ k, tb+ k, tc+ k, td+ k) is good for any positive integers t > 1, k > 0

that td+ k < N , and there are at least

(N − d) + (N − 2d) + · · ·+ (N − bN/dcd)

> NbN/dc − d(1 + 2 + · · ·+ bN/dc)

> N(N/d− 1)− d ·
N
d

(
N
d + 1

)
2

>
N2

2d
− 2N

choices of (t, k).

Now, observe that the tuple (0, (2m − n)m, (2m − n)n,mn) with m < n positive integers,

n odd, and gcd(m,n) = 1 is primitive. Therefore, for each odd integer n > 1, there are ϕ(n)

choices of m. As each (m,n) gives N2

2mn − 2N > N2

2n2 − 2N choices of (t, k), there are at least

N2

2
· ϕ(n)

n2
− 2Nϕ(n) >

N2

2
· ϕ(n)

n2
− 2Nn

tuples formed from a fixed value of n.

As
∑
n odd

ϕ(n)

n2
>

∑
p odd prime

ϕ(p)

p2
=

∑
p odd prime

p− 1

p2
which diverges,

∑
n odd

ϕ(n)

n2
also diverges.

Pick a cutoff K such that
∑
n odd
n<K

ϕ(n)

n2
> 3. It follows that, for N > K2, there are at least

N2

2

∑
n odd
n<K

ϕ(n)

n2

− 2N
∑
n odd
n<K

n >
3N2

2
− 2N

K2

4
> N2

good tuples. �

Comments. In fact, for each pair of positive integers m < n with n odd and gcd(m,n) = 1, (0,mn −
(2m− n)m,mn− (2m− n)n,mn) is also primitive so the number of good tuples is undercounted by at

least a factor of 2.
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P6. Determine all continuous functions f : R → R such that the set of functions g : R → R
satisfying

g(a)f(b) + g(b)f(a) 6 (a+ f(a))(b+ f(b)) for all a, b ∈ R

is finite but nonempty.

Proposed by TLP.39

Answer. All continuous functions f that satisfy either

inf
x>0

f(x)

x
= sup

x<0

f(x)

x
6= 0, or inf

x<0

f(x)

x
= sup

x>0

f(x)

x
6= 0.

Solution. Rewrite the inequality as follows:

f(a)

(
g(b)− f(b)

2
− b
)

+ f(b)

(
g(a)− f(a)

2
− a
)
6 ab for all a, b ∈ R.

Defining h : R→ R by h(x) = g(x)− f(x)

2
− x for all x ∈ R, we get that the set

Hf := {h : R→ R | h(a)f(b) + h(b)f(a) 6 ab for all a, b ∈ R}

must also be finite and nonempty.

Lemma 1. |Hf | < 2

Proof. Suppose there exist two distinct elements h1 and h2 of Hf . For any λ ∈ (0, 1), define

h3(x) = λh1(x) + (1− λ)h2(x). We have

h3(a)f(b) + h3(b)f(a) = λ (h1(a)f(b) + h1(b)f(a)) + (1− λ) (h2(a)f(b) + h2(b)f(a))

6 λab+ (1− λ)ab = ab.

So h3(x) must be an element of Hf for all λ ∈ (0, 1), which contradicts the finiteness of Hf .

By the above lemma, |Hf | = 1 and so let Hf = {h}.

Lemma 2. The range of f must contain both positive and negative numbers.

Proof. WLOG, we may assume for the sake of contradiction that f(x) ≥ 0 for all x ∈ R.

Consider the function h2(x) = h(x)− α where α be any positive real constant. We have

h2(a)f(b) + h2(b)f(a) = h(a)f(b) + h(b)f(a)− α(f(b) + f(a))

6 h(a)f(b) + h(b)f(a) 6 ab

Therefore, h2 is also an element of Hf , which contradicts the uniqueness of h.
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Lemma 3. There exists exactly one value of k such that either f(x) 6 kx for all x ∈ R or

f(x) > kx for all x ∈ R. Moreover, for that value of k, we have k 6= 0.

Proof. From Lemma 2, for any (not necessary distinct) real numbers a, b, c, d such that f(a), f(b) >

0 and f(c), f(d) < 0, we obtain the following inequalities

h(a)

f(a)
+
h(b)

f(b)
6

a

f(a)
· b

f(b)

h(c)

f(c)
+
h(d)

f(d)
6

c

f(c)
· d

f(d)

h(a)

f(a)
+
h(c)

f(c)
>

a

f(a)
· c

f(c)

h(b)

f(b)
+
h(d)

f(d)
>

b

f(b)
· d

f(d)

Combining the above inequalities gives us(
a

f(a)
− d

f(d)

)(
b

f(b)
− c

f(c)

)
> 0.

Hence, there must exist a constant t such that either

1.
a

f(a)
> t >

c

f(c)
for all a and c that f(a) > 0 and f(c) < 0, or

2.
a

f(a)
6 t 6

c

f(c)
for all a and c that f(a) > 0 and f(c) < 0.

In both cases, either t = 0 or there exists constant k = 1/t 6= 0 such that f(x) > kx for all

x ∈ R that f(x) 6= 0 or f(x) 6 kx for all x ∈ R that f(x) 6= 0.

However, if t = 0, then both cases imply that either

1. a > 0 for all a such that f(a) 6= 0, or

2. a 6 0 for all a such that f(a) 6= 0.

In other words, either f(a) = 0 for all a > 0 or f(a) = 0 for all a < 0. Thus, by continuity of

f , either f(a) = 0 for all a > 0 or f(a) = 0 for all a 6 0.

Suppose f(a) = 0 for all a 6 0. (The other case can be done analogously.) Since there

exist a positive real number and a negative real number in the range of f , there must also exist

a, b > 0 such that f(a) > 0 > f(b). Hence for any c < 0, we have

f(a)g(c) 6 ac < 0 =⇒ g(c) < 0

and

f(b)g(c) 6 bc < 0 =⇒ g(c) > 0

which lead to a contradiction. So, we conclude that the case when t = 0 can’t happen.
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Now, without loss of generality, we assume that f(x) 6 kx for all x ∈ R that f(x) 6= 0 and

also k > 0 (The other cases can be done analogously.)

If there is a real number q such that f(q) > kq, we get that f(q) = 0 and thus 0 = f(q) >

kq =⇒ q < 0. By continuity of f , we obtain that f(x) = 0 for all x 6 0, and so a contradiction

follows by the same argument as in the case t = 0. So, we conclude that f(x) 6 kx for all

x ∈ R. Furthermore, observe that the function h(x) = −f(x)

2k2
+
x

k
for all x ∈ R satisfies the

condition because

(
f(a)

k
− a
)(

f(b)

k
− b
)
> 0 for all a, b ∈ R.

If there is another constant k′ 6= k such that f(x) 6 k′x for all x ∈ R, then we get that f(x)

is not linear and the function h(x) = −f(x)

2k′2
+
x

k′
for all x ∈ R also satisfies the condition. This

contradicts Lemma 1. Thus, we’ve proved the existence of k as stated at the beginning.

The fact that k 6= 0 follows immediately as a consequence of Lemma 2.

For the rest of the solution, we’ll show that the condition in Lemma 3 is enough to guarantee

the uniqueness of element of Hf .

By Lemma 3, there exist sequences of positive real numbers {rn} and of negative real

numbers {sn} such that lim
n→∞

f(rn)

rn
= lim

n→∞

f(sn)

sn
= k. Now, for any fixed ri and sj , note that

f(ri) > 0 and f(sj) < 0. We, then, have

h(ri)f(sj) + h(sj)f(ri) 6 risj =⇒ h(ri)

f(ri)
+
h(sj)

f(sj)
>

ri
f(ri)

· sj
f(sj)

2h(ri)f(ri) 6 r
2
i =⇒ h(ri)

f(ri)
6

r2i
2f(ri)2

2h(sj)f(sj) 6 s
2
j =⇒ h(sj)

f(sj)
6

s2j
2f(sj)2

.

Combining all the inequalities, we obtain

r2i
2f(ri)2

>
h(ri)

f(ri)
>

ri
f(ri)

· sj
f(sj)

−
s2j

2f(sj)2

and
s2j

2f(sj)2
>
h(sj)

f(sj)
>

ri
f(ri)

· sj
f(sj)

− r2i
2f(ri)2

.

On the other hand, we have

h(ri)f(y) + h(y)f(ri) 6 ri · y =⇒ h(y) 6
ri

f(ri)
· y − h(ri)

f(ri)
· f(y)

h(sj)f(y) + h(y)f(sj) 6 sj · y =⇒ h(y) >
sj

f(sj)
· y − h(sj)

f(sj)
· f(y).

Hence, choosing i, j → ∞, we get h(y) = −f(y)

2k2
+
y

k
for all y ∈ R. Note that such function

satisfies the condition as shown as part of the proof of Lemma 3. �
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J1. Let Z>1 denote the set of all integers greater than 1. Is there a function f : Z>1 → Z>1

such that

ff(n)(m) = mn

for all integers m,n greater than 1?

Note: for any positive integer k, fk(n) denotes the result of f being applied k times to n.

Proposed by jeneva

Answer. No.

Solution. Suppose there exists such an f . Clearly, f is injective. Fix an m ∈ Z>1, and consider

the chain

m→ f(m)→ f(f(m))→ · · ·

All powers of m must appear in this chain, so it cannot end in a cycle, hence all terms must be

distinct. Now for each k, ` ∈ Z>1,

ff(k)+f(`)(m) = ff(`)(mk) = mk` = ff(k`)(m),

so f(k) + f(`) = f(k`). However, this implies

f(2f(3)) = f(2)f(3) = f(3f(2)),

contradicting the fact that f is injective. �
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J2. Find all pairs (a, b) of positive integers such that (a+ 1)b−1 + (a− 1)b+1 = 2ab.

Proposed by talkon

Answer. (1, 2) and (4, 2)

Solution. A simple check gives (a, b) = (1, 2), (4, 2) as the only solutions when a 6 2 or b 6 3

(when a = 2, we use the bound 3b−1 + 1 > 2b+1 for all b > 3 which can be proved by induction).

We will now look for solutions with a > 2 and b > 3. First, expand and re-write the equation

in the form

ab+1 − (b+ 3)ab +

b−1∑
i=0

ai
[(
b− 1

i

)
+ (−1)b+1−i

(
b+ 1

i

)]
= 0. (1)

This gives a |
(
b−1
0

)
+ (−1)b+1

(
b+1
0

)
, which is impossible when b+ 1 is even. So, b must be even,

and we can divide both sides of (1) by a to get

ab − (b+ 3)ab−1 +
b−2∑
i=0

ai
[(
b− 1

i+ 1

)
+ (−1)i

(
b+ 1

i+ 1

)]
= 0. (2)

From (2), we get that

1. a |
(
b−1
1

)
+
(
b+1
1

)
=⇒ a | 2b; let 2b = at where t is a positive integer.

2. a2 | a
[(

b−1
2

)
−
(
b+1
2

)]
+ 2b =⇒ a2 | 2b(a− 1)− a =⇒ a | t+ 1 =⇒ t > a− 1.

On the other hand, from the initial equation, we get

2ab > (a+ 1)b−1 =⇒ 2a >

(
1 +

1

a

)b−1
>

(
1 +

1

a

)a(a−1)
2
−1

=

(
1 +

1

a

) (a+1)(a−2)
2

.

But we also have

(
1 +

1

a

)a+1

> 1 + (a + 1)/a > 2 and 2(a−2)/2 > 2a for all a > 11 (by easy

induction). So, we only need to check 3 6 a 6 10. Modulo 4 eliminates the case when a is odd.

From a | t+ 1 and b is even, we get that t is odd and so 4 | a. In particular, a ∈ {4, 8}.

• If a = 4, we have 5b−1 + 3b+1 = 2 · 4b. From a | t+ 1, we get that either t = a− 1 = 3 =⇒
b = 6 which is not a solution, or t > 2a − 1 = 7 =⇒ b > 14. We’ll prove by induction

that 5b−1 > 2 · 4b for all integer b > 14, which, if true, would gives us contradiction.

The base case is equivalent to (5/4)13 > 8, which is true since (5/4)13 =

(
1 +

1

4

)13

>

1 + 13/4 +

(
13

2

)
/42 = 73/8 > 8. The inductive step is easy.

• If a = 8, we have 9b−1 + 7b+1 = 2 · 8b. Modulo 3 gives us 1 ≡ 2 · 2b (mod 3). But recall

that b is even, which gives 2 · 2b ≡ 2 (mod 3). Contradiction!

In summary, there are no solutions other than those stated at the beginning. �
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J3. There is a calculator with a display and two buttons: −1/x and x + 1. The display is

capable of displaying precisely any arbitrary rational numbers. The buttons, when pressed, will

change the value x displayed to the value of the term on the button. (The −1/x button cannot

be pressed when x = 0.)

At first, the calculator displays 0. You accidentally drop the calculator on the floor, resulting

in the two buttons being pressed a total of N times in some order. Prove that you can press

the buttons at most 3N times to get the display to show 0 again.

Note: partial credit will be given for showing a bound of cN for a constant c > 3.

Proposed by talkon

Solution (1: backtracking). Let R and T , for rotate and twist, denote a press of the x→ − 1
x

and x→ x+ 1 button respectively. For a sequence X of R and T s, let Xn denote X repeated

n times. Clearly, RR is the identity.

Lemma 1. For any positive integer n, RTnRT (RTT )n−1RT is the identity sequence.

Proof.

x
RTn

−−−→ −1

x
+ n

RT−−→ 1− (n− 1)x

1− nx
RTT−−−→ 1− (n− 2)x

1− (n− 1)x

...

RTT−−−→ 1

1− x
RT−−→ x. �

Lemma 2. For any positive integer n, TnRT (RTT )n−1 sends 0 to 0.

Proof.

0
Tn

−−→ n
RT−−→ n− 1

n
RTT−−−→ n− 2

n− 1
...

RTT−−−→ 1

2
RTT−−−→ 0. �

Now we break off the sequence of N moves into chunks of the form RTn (except possibly

the first chunk which can be in the form Tn). For example,

TTTRTRTTTRRTR = T 3(RT 1)(RT 3)(RT 0)(RT 1)(RT 0).

Each RT 0 = R can be reversed by w0 = R. By Lemma 1, each RTn where n > 1 can

be reversed by wn = RT (RTT )n−1RT . By Lemma 2, the beginning Tn can be reversed by
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un = RT (RTT )n−1 (if n = 0 define un as the empty sequence). Therefore, a sequence

T b(RT a1)(RT a2) · · · (RT an)

of b+ n+ a1 + · · ·+ an = N button presses is reversed by the sequence

wanwan−1 · · ·wa1ub

of at most

(3an + 1) + (3an−1 + 1) + · · ·+ (3a1 + 1) + 3b− 1 = 3

(
b+

n∑
i=1

an

)
+ n− 1 < 3N

button presses. �

Solution (2: continued fractions). Define functions A,B,L : Q→ Z>0 as follows:

• A(0) = B(0) = L(0) = 0.

• For a positive rational number q, note that there is a unique way to write q as a finite

simple continued fraction:

q = a0 +
1

a1 +
1

a2 +
1

. . . +
1

am

where a0 is a nonnegative integer, and a1, a2, . . . , am are positive integers. Define A(q) =

a0 + a1 + · · ·+ am.

There is also a unique way to write q as a negative continued fraction:

q = b0 −
1

b1 −
1

b2 −
1

. . . −
1

bn

where b0 > 1 and b1, b2, . . . , bn > 2 are integers. Define B(q) = b0 + b1 + · · · + bn, and

L(q) = n.

• For a negative rational number q, A(q) = A
(
−1

q

)
+ 1, B(q) = B

(
−1

q

)
+ 1, and L(q) =

L
(
−1

q

)
.

The crucial claim is that A(q) = B(q)−L(q) for all rational q. This can be seen by ”induction”

through the following claims, both of which are easy to prove:
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• For a positive rational number q, A(q) = B(q)−L(q) implies A(q+1) = B(q+1)−L(q+1)

and A
(
−1

q

)
= B

(
−1

q

)
− L

(
−1

q

)
.

• For a rational number q > 1, A
(
q−1
q

)
= A(q) = B(q)− L(q) = B

(
q−1
q

)
− L

(
q−1
q

)
.

Next we have the following claims:

• A(q) = A
(
1
q

)
; this is obvious.

• If 0 < q < 1, A(q) = A(1− q). This follows from noting that 1− q = 1− 1
1/q so

A(1− q) = B(1− q)− L(1− q) = B

(
1

q

)
− L

(
1

q

)
= A

(
1

q

)
= A(q).

Together, these give A
(
− 1

x

)
6 A(x) + 1 and A(x+ 1) 6 A(x) + 1. Therefore if d is the number

displayed after the initial N button presses, A(d) 6 N .

We can use at most one move to make the displayed number d′ negative; this gives A(d′) 6

N + 1. Write

−d′ = d0 −
1

d1 −
1

d2 −
1

. . . −
1

dn

,

so

d′ = −d0 +
1

d1 −
1

d2 −
1

. . . −
1

dn

.

It follows that using the move x→ x+ 1 d0 times followed by x→ −1/x one time sends us to

−d1 +
1

d2 −
1

. . . −
1

dn

.

Therefore, repeating this, starting from d′ there is a sequence of d0 + d1 + · · · + dn + n =

B(−d′)+L(−d′) button presses that gives us 0. Finally, as d0 > 1 and d1, . . . , dn > 2, B(−d′) >
2L(−d′) + 1. Therefore starting from d, we can press the buttons at most

1 +B(−d′) + L(−d′) 6 3
(
B(−d′)− L(−d′)

)
− 1

= 3A(−d′)− 1 = 3

(
A

(
1

d′

)
− 1

)
− 1 = 3A(d′)− 4 6 3N − 1

times to return to 0. �
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J4. A sequence a1, a2, . . . of positive integers satisfies

an =
√

(n+ 1)an−1 + 1 for all n > 2.

What are the possible values of a1?

Proposed by TacH and ThE-dArK-lOrD

Answer. 1.

Solution. First, the sequence an = n obviously satisfies the given condition, so 1 is a possible

value of a1.

Now suppose a1 > 1. We can easily prove by induction on n that an > n for all positive

integer n. The given relation rearranges to

an − n =
n+ 1

an + n
·
(
an−1 − (n− 1)

)
,

so {an − n}n>1 is a strictly decreasing sequence of positive integers, but this is impossible. �
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J5. A positive integer n > 2 is chosen, and each of the numbers 1, 2, . . . , n is colored red or

blue. Show that it is possible to color each subset of {1, 2, . . . , n} either red or blue so that each

red number lies in more red subsets than blue subsets, and each blue number lies in more blue

subsets than red subsets.

Proposed by ThE-dArK-lOrD

Solution (1: parity). If all numbers 1, 2, . . . , n have the same color, the problem is trivial.

Else, WLOG there are > 2 blue and > 1 red numbers.

We start by coloring a subset of {1, 2, . . . , n} blue if it has an odd number of elements, and

red otherwise. At this stage, each number is in exactly 2n−2 red and 2n−2 blue subsets.

Now recolor subsets containing only blue elements blue and subsets containing only red

elements red. As there are > 2 blue and > 1 red elements, every number in {1, 2, . . . , n} is in

at least one subset that has its color switched. Therefore every number is now in more subsets

of its own color than of the other color.

Solution (2: coloring in pairs). We start with a lemma: let n > 2, and WLOG n is red. Then,

it is possible to color the 2n−1 subsets of {1, 2, . . . , n} containing n so that

• For each i = 1, . . . , n − 1, of the 2n−2 subsets containing both i and n, exactly 2n−3 are

red and exactly 2n−3 are blue.

• Of the 2n−1 subsets containing n, exactly 2n−2 + 1 are red.

Proof of lemma. Divide the subsets of {1, 2, . . . , n} containing n into 2n−2 pairs of the form(
S ∪ {n}, {1, . . . , n} \ S

)
where S ⊂ {1, 2, . . . , n− 1}. Color 2n−3 pairs red (= both sets in the

pair are red), 2n−3 pairs blue, but make sure that the pair
(
{n}, {1, . . . , n}

)
is blue.

For any i = 1, . . . , n − 1, each pair has exactly one set with i, so at this point, of the 2n−2

subsets containing both i and n, exactly 2n−3 is red and exactly 2n−3 is blue. Also, each pair

has exactly two sets with n, so exactly 2n−2 subsets that contain n are currently colored red.

Finally, recolor {n} to red, and we’re done. �

Proof of J5. Permute the numbers so that 1 and 2 have the same color, say, red. Apply the

lemma repeatedly to first color all sets with maximum n, then all sets with maximum n − 1,

and so on until 3, then color all subsets of {1, 2} red. �

Solution (3: induction by two). Suppose there are r red elements a1, . . . , ar and s blue elements

b1, . . . , bs, with r + s = n and (r, s) /∈ {(0, 0), (1, 1)}. We will use induction on min(r, s), with

the additional (trivial) constraint that there exists a bichromatic coloring. The cases 0 ∈ {r, s}
and (r, s) = (2, 2) are easy.

Now consider extending (r, s) 7→ (r + 1, s + 1), where (r, s) 6= (0, 0), with new red element

a0 and blue element b0. Consider a bichromatic coloring C for S. We construct a coloring for

{a0, b0}tS as follows: for any T ⊆ S, color T with C(T ), {a0}tT with red, {b0}tT with blue,

and {a0, b0} t T with C(T ). It is easy to check that this works. �

Comments. In Solution 2, it turns out that every number will be in exactly 2n−2 + 1 subsets of its own

color.
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J6. Determine all positive reals r such that, for any triangle ABC, we can choose points

D,E, F trisecting the perimeter of the triangle into three equal-length sections so that the area

of 4DEF is exactly r times that of 4ABC.

Proposed by talkon

Answer. r ∈
[

1

4
,
4

9

]
.

Solution. First, if 4ABC is equilateral, [DEF ]/[ABC] is always at least 1
4 and if 4ABC is

almost a straight line (sides 1, 1, ε), [DEF ]/[ABC] is always less than 4
9 + ε′. Therefore our r

must be in
[
1
4 ,

4
9

]
.

WLOG let a > b > c, and define t = a+b+c
3 . Since we can view the area as a function of

point D which is continuous, it suffices to show that [ABC] can be both 6 1
4 and > 4

9 of [DEF ].

To show that [DEF ] can attain a value > 4
9 [ABC], choose D = C. Clearly a > t. If b > t

then E,F is on CB,CA and

[DEF ]

[ABC]
=
t2

ab
>

(a+ b)2

9ab
>

4

9
.

Else, E is on CB but F is on AB. In this case BT = b+ c− t so

[DEF ]

[ABC]
=
b+ c− t

c
· t
a

=
(2b+ 2c− a)(a+ b+ c)

9ac
>

(b+ c)(a+ b+ c)

9ac
>

(2c)(2a)

9ac
=

4

9
.

To show that [DEF ] can attain a value 6 1
4 [ABC], choose D on AB, E on AC such that

DE ‖ BC. Let AD = x ·AB. Now by the AM-GM Inequality,

[DEF ]

[ABC]
= x(1− x) 6

1

4
. �
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Results

We received a total of 24 submissions: 13 for MO3 and 11 for JMO. Here are the scores, with

usernames removed for anonymity. A score of − indicates that the user had not submitted a

solution for that problem.

Rank P1 P2 P3 P4 P5 P6 Σ

1 7 7 7 7 6 − 34

2 6 7 7 7 0 3 30

3 6 − 7 7 7 − 27

4 7 7 − 7 3 0 24

5 6 7 − 6 1 0 20

= 6 − 7 7 − − 20

7 6 3 7 − − − 16

8 6 − 1 7 − − 14

= 7 − 7 0 − − 14

= 7 0 − 7 0 − 14

11 7 − − 6 − − 13

12 6 − − − − − 6

13 − 0 − 3 − − 3

Σ 77 31 43 64 17 3 234

Avg. 5.92 2.38 3.31 4.84 1.31 0.23 18.00

Rank J1 J2 J3 J4 J5 J6 Σ

1 7 7 6 7 7 7 41

2 7 6 7 7 7 − 34

3 7 3 7 1 7 7 32

4 7 1 7 7 7 0 29

5 7 − 7 7 7 0 28

6 7 3 7 7 1 1 26

7 2 − 7 7 7 2 25

8 7 2 7 7 0 0 23

9 2 2 − 2 3 − 9

10 7 − − 0 − − 7

11 − − 6 − − − 6

Σ 60 24 61 52 46 17 260

Avg. 5.45 2.18 5.55 4.73 4.18 1.55 23.64
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