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Language: English

Day: 1

Problem 1. Determine whether there exists a finite set S of primes such that for all positive integers

m, there exists a positive integer n and prime p ∈ S such that pm | n! but pm+1 - n!.

Problem 2. Determine all bijections f : Z→ Z satisfying

ff(m+n)(mn) = f(m)f(n)

for all integers m,n.

Note: f0(n) = n, and for any positive integer k, fk(n) means f applied k times to n, and f−k(n)

means f−1 applied k times to n.

Problem 3. Let A,B,C be three distinct points on a line `. Prove that for each pair of distinct

points B1, C1 such that
←−−→
B1C1 does not pass through A, and

←−→
B1C is not parallel to

←−→
C1B, there is a

unique point A1 satisfying:

(i) A1 does not lie on
←−−→
B1C1,

(ii) the projections of A onto
←−−→
B1C1, of B onto

←−→
C1A1, and of C onto

←−−→
A1B1 lie on a line not parallel

to `, and

(iii) the reflections of A over
←−−→
B1C1, of B over

←−→
C1A1, and of C over

←−−→
A1B1 lie on a line not parallel

to `.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points
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Language: English

Day: 2

Problem 4. Let P ∈ Z[x] be a nonconstant polynomial without integral roots. Prove that there is

a positive integer m 6 3 · degP such that P (m) does not divide P (m+ 1).

Problem 5. Let c1, c2, . . . , ck be integers. Consider sequences {an} of integers satisfying

an = c1an−1 + c2an−2 + · · ·+ ckan−k

for all n > k + 1. Prove that there is a choice of initial terms a1, a2, . . . , ak not all zero satisfying:

there is an integer b such that p divides ap − b for all primes p.

Problem 6. Ana has an n × n lattice grid of points, and Banana has some positive integers

a1, a2, . . . , ak which sum to exactly n2. Banana challenges Ana to partition the n2 points in the

lattice grid into sets S1, S2, . . . , Sk so that for all i ∈ {1, 2, . . . , k},

(i) |Si| = ai, and

(ii) the set Si has an axis of symmetry.

Prove that Ana can always fulfill Banana’s challenge.

Note: a line ` is said to be an axis of symmetry of a set S if the reflection of S over ` is precisely S

itself.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points
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Solutions and Comments

Overall Comments.

On difficulty, we feel that our problems this year are generally easier than last year (especially

P5), but still on a Mock IMO level.

On subject balancedness, we decided to go with a single hard geometry problem as we feel

geometry is declining as a subject, and that problems in other subjects are more interesting. Also,

in our problem selection process, we decided to rate each problem by its “subject-ness” which sum

to 1. We’d also like to report that we rated our contest as follows:

Algebra: 1.88, Combinatorics: 1.47, Geometry: 1.00, Number Theory: 1.65

which we find balanced enough.

Problem 1.

Determine whether there exists a finite set S of primes such that for all positive integers m, there

exists a positive integer n and prime p ∈ S such that pm | n! but pm+1 - n!.

Proposed by TacH

Answer. No.

Solution. We will prove, by induction on n, the following stronger statement: for any set of n

primes {p1, p2, · · · , pn}, there exists an integer A such that for any A consecutive integers, there is

at least one not in
⋃
Si, where Si is defined as {νpi(m!) | m ∈ Z+}.

The base case is clear: choose A = p + 1. For the inductive step, it suffices to exhibit a new

value A′ for {p1, p2, . . . , pn+1} in terms of the value of A for {p1, p2, · · · , pn}.
We claim A′ = ApA+1

n+1 + A suffices. Consider A′ consecutive integers. If the last A′ − A does

not contain A consecutive integers not in Sn+1, then Sn+1 must have at least pA+1
n+1 numbers in that

range (one for each A consecutive integers), representing pA+1
n+1 consecutive values of m. One such

m must be divisible by pA+1
n+1 , and [νpn+1(m!)−A, νpn+1(m!)− 1] will be our desired interval.

Therefore, any A′ consecutive integers must contain A consecutive integers not in Sn+1, so using

the property of A, at least one of them must be not in
⋃n+1

i=1 Si as required. �

Comments. A better A′ in the inductive step is

A+ νpn+1(pA+1
n+1 !) = A+ pAn+1 + pA−1n+1 + · · ·+ pn+1 + 1,

but this is a bit harder to prove.
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Problem 2.

Determine all bijections f : Z→ Z satisfying

ff(m+n)(mn) = f(m)f(n)

for all integers m,n.

Note: f0(n) = n, and for any positive integer k, fk(n) means f applied k times to n, and

f−k(n) means f−1 applied k times to n.

Proposed by talkon

Answer. The infinite family of functions n 7→ n + c for any integer c, and the function n 7→
(−1)n+1n.

Solution. We consider two cases, depending on the value of f(0).

Case 1: f(0) = 0.

By plugging in (m,n) = (k,−k), we have −k2 = f(k)f(−k) for all integers k. Since f is

bijective, by induction on k, {f(k), f(−k)} = {k,−k} for all positive integers k. Hence f(f(n)) = n

for all integers n.

Now suppose that m,n are integers with the same parity, so f(m+ n) is even. Hence,

mn = ff(m+n)(mn) = f(m)f(n),

so either both f(m) = m and f(n) = n or f(m) = −m and f(n) = −n. Therefore there are four

solutions left to check: n 7→ n, n 7→ −n, n 7→ (−1)nn, and n 7→ (−1)n+1n, and by considering m

even and n odd, we can see that only two work: n 7→ n and n 7→ (−1)n+1n.

Case 2: f(0) 6= 0.

Plug in (m,n) = (f−1(k), 0) to get fk(0) = kf(0) for all integers k. In particular, when k = −1

we have f−1(0) = −f(0). Now substitute in (m,n) = (m,−f(0)) to get, for all integers m,

ff(m−f(0))(−mf(0)) = 0. (1)

Now note that the orbit . . . → f−2(0) → f−1(0) → 0 → f(0) → f(f(0)) → . . . contains all

multiples of f(0), so it is unbounded and not periodic. Hence from

ff(n)−n−f(0)(0) = ff(n)
(
f−n−f(0)(0)

)
= ff((n+f(0))−f(0))((−n− f(0)) · f(0)

)
= 0

where the second equation follows from fk(0) = kf(0) and the third equation follows from (1), we

have f(n)− n− f(0) = 0 for all integers n. Hence the function f must be of the form n 7→ n+ c

for some constant c, and it’s easy to see that all such functions work. �

Comments. There are several possible ways to proceed in Case 2. For example, another way is to

plug in m = 0, f(0) and 2f(0).
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Problem 3.

Let A,B,C be three distinct points on a line `. Prove that for each pair of distinct points B1, C1

such that
←−−→
B1C1 does not pass through A, and

←−→
B1C is not parallel to

←−→
C1B, there is a unique point

A1 satisfying:

(i) A1 does not lie on
←−−→
B1C1,

(ii) the projections of A onto
←−−→
B1C1, of B onto

←−→
C1A1, and of C onto

←−−→
A1B1 lie on a line not parallel

to `, and

(iii) the reflections of A over
←−−→
B1C1, of B over

←−→
C1A1, and of C over

←−−→
A1B1 lie on a line not parallel

to `.

Proposed by TacH

Solution. Let A⊥, B⊥, C⊥ be the projections of A onto
←−−→
B1C1, of B onto

←−→
C1A1, and of C onto

←−−→
A1B1, and let A′, B′, C ′ be the reflections of A over

←−−→
B1C1, of B over

←−→
C1A1, and of C over

←−−→
A1B1

respectively.

Since the lines in (ii) and (iii) are not parallel to `, there exist a spiral similarity λ sending

A→ A′, B → B′, and C → C ′. Let S be the center of λ, let `′ =
←−−→
B1C1, and let T = ` ∩ `′.

Note that there is also a spiral similarity χ with center S that sends A→ B and A⊥ → B⊥. Let

the tangent to (ABS) at B cut C1B⊥ at P . Since ∠A⊥AB = ∠B⊥BP , 4AA⊥T ∼ 4BB⊥P .

Therefore χ sends T → P . Hence, from B = AT ∩BP , (BTPS) is cyclic.

Now, S is also the center of a spiral similarity ψ that sends T → A⊥ and P → B⊥. Since

C1 = TA⊥ ∩ PB⊥, (STPC1) is cyclic.

Combining this with the above, we have now shown that S must be on (BTC1). Similarly, S

must be on (CTB1) as well, hence S is unique, and is the intersection of (BTC1) and (CTB1).

Finally, from this unique S, we can construct A1 as the intersection of B⊥C1 and C⊥B1. Clearly

this A1 works, and it must be unique as well. �

Comments. 1. The conditions in the problem are needed; if A is on
←−−→
B1C1 then `1, `2 found in

the above solution will coincide with `, and if
←−→
B1C is parallel to

←−→
C1B, the locus becomes a

line since B⊥, C1, C⊥, B1 lie on the same line.

2. If we remove the not parallel to ` condition, there may be four additional points A formed,

which can be constructed as follows. First, draw a line `′ through A⊥ parallel to `. Then,

draw the circle ΓB with diameter BC1 possibly cutting ` at X1, X2, and the circle ΓC with

diameter CB1 possibly cutting ` at Y1, Y2. Then the additional points are the points formed

by the intersection of C1Xi and B1Yj .
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Problem 4.

Let P ∈ Z[x] be a nonconstant polynomial without integral roots. Prove that there is a positive

integer m 6 3 · degP such that P (m) does not divide P (m+ 1).

Proposed by ThE-dArK-lOrD and tastymath75025

Solution. Let u be the least positive integer such that P (u) 6= ±P (1). Since P (x) = ±P (1) can

only have 2n roots, 2 6 u 6 2n+ 1.

Using finite differences or Lagrange Interpolation, we have

P (u+ n) =
n∑

i=0

(−1)n−i+1

(
n

i

)
P (u− 1 + i).

If P (u) | P (u+ 1) | · · · | P (u+ n), the above equation reduces to

P (u+ n) ≡ ±P (u− 1) ≡ ±P (1) (mod P (u))

hence P (u) - P (u + n) which is a contradiction. Therefore, P (m) - P (m + 1) for some m ∈
{u, u+ 1, . . . , u+ n− 1}. �

Comments. 1. For the record, we’d like to note that a more general (and unsolved) version of

this problem was actually posted in the High School Olympiad forums by @ThE-dArK-lOrD:

Given a positive integer n. Determine the largest positive integer m such that there exists a

polynomial P ∈ Z[x] with degree n such that P (i) | P (i+ 1) for all positive integer i < m.

The post has been deleted, and since there were no comments, exposure was very low. @tasty-

math75025 has provided a bound n+ 2 6 m 6 3n privately, from which we have created this

problem. Note that @tastymath75025 is not a member of InfinityDots.

2. The lower bound n + 2 6 m in the above comment can be shown by taking P (x) = 2x − 1

when n = 1, and taking

P (x) = (x− 1)(x− 2) · · · (x− n) +
n!

n− 1

otherwise.

When n = 2k is even, we can also show that n + 3 6 m by considering a polynomial

Q(x) of degree k satisfying Q((t + 1/2)2) = ±1 for all t = 0, 1, . . . , k, then take P (x) =

cQ((x− k − 3/2)2) where c is a big enough constant to make P ∈ Z[x].

3. One way to get a better lower/higher bound on the general problem is to find the exact

maximum value of m′ where there exists a P ∈ Z[x] such that |P (1)| = |P (2)| = · · · =

|P (m′)|. It will immediately follow that m′ + 1 6 m 6 m′ + n.

7



Problem 5.

Let c1, c2, . . . , ck be integers. Consider sequences {an} of integers satisfying

an = c1an−1 + c2an−2 + · · ·+ ckan−k

for all n > k + 1. Prove that there is a choice of initial terms a1, a2, . . . , ak not all zero satisfying:

there is an integer b such that p divides ap − b for all primes p.

Proposed by talkon

Solution (1: Algebraic). If c1, c2, . . . , ck are all zero, choose ai = k! for all i = 1, 2, . . . , k. The

recurrence relation gives us an = 0 for all n > k + 1. Not hard to see that this gives p | ap =⇒
ap ≡ 0 (mod p) for all primes p.

Now, suppose c1, c2, . . . , ck are not all zero. Let z1, z2, . . . , zk be the roots (counting multiplic-

ities) of the characteristic equation λk −
∑k

i=1 ciλ
k−i = 0. The key part is choosing

an = zn1 + zn2 + · · ·+ znk

for all n.

By Vieta, we get that the elementary symmetric polynomials

ej =
∑

1≤i1<i2<...<ij≤k
zi1zi2 . . . zij = (−1)j+1cj

is an integer for all j = 1, 2, . . . , k. By the Fundamental Theorem of Symmetric Polynomials, we

get that P (z1, z2, . . . , zk) is an integer for all symmetric polynomials P ∈ Z[x1, x2, . . . , xk]. In

particular, an is an integer for all n ∈ Z+.

To prove that a1, a2, ..., ak are not all zero, note that if ai = 0 for all i = 1, 2, . . . , k, we can

use Newton’s identities to prove by induction on i that σi = 0 for all i = 1, 2, . . . , k. This implies

ci = 0 for all i = 1, 2, . . . , k, which is a contradiction.

Now, for each prime p, we’ve

cp1 = (z1 + z2 + ...+ zk)p =
k∑

i=1

zpi + pT (z1, z2, ..., zk) = ap + pT (z1, z2, ..., zk)

for some symmetric polynomial T ∈ Z[x1, x2, ..., xk]. So, T (z1, z2, ..., zk) is an integer. This gives

ap ≡ cp1 ≡ c1 (mod p), so we are done by choosing b = c1. �

Solution (2: Combinatorial). If ci are all zero, then just choose ai like in the first solution. Else,

consider necklaces of size n that is

• marked, that is, we mark the positions on it as 1, 2, . . . , n, and

• created from parts of size 1, 2, . . . , k.

We assign a value to each necklace defined as the product of ci’s where i’s are the size of the parts

counting multiplicity.
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Now define an as the sum of values of all such necklaces of size n. Clearly an is an integer for

all n, and if j = min{i | ci 6= 0} then aj = jcj is clearly nonzero. Next we’ll show that {an} satisfy

the recurrence relation.

Let’s look at each such necklace. The position 1 of the necklace is the rth position (counting

clockwise) of a part of size i, where 1 6 r 6 i 6 k. Call (r, i) the type of that necklace.

By looking at the size of part containing position n + 1 − r (that is the part immediately

counterclockwise from the part containing position 1), we can see that the sum of values of necklaces

of size n with type (r, i), denoted by an,(r,i), satisfies

an,(r,i) = c1an−1,(r,i) + c2an−2,(r,i) + · · ·+ ckan−k,(r,i)

when n > k. Summing the above over all types (r, i) implies {an} satisfies the recurrence relation.

Finally, we can see that actually, when n = p is prime, we can remove the marks from the

necklace allowing it to be rotated into p positions. Except when all parts have size 1, where rotation

doesn’t change the necklace, these p positions are all counted as distinct in ap, but have the same

value. Since the necklace where all parts have size 1 has value cp1, it follows that for all prime p,

sp ≡ cp1 ≡ c1 (mod p)

hence we can choose b = c1. �

Comments. The sequences {an} in the two solutions actually turn out to be exactly the same

sequence. One way to show this is by noting that the equation about an,(r,i) is still true for all

n 6 k, (taking an,(r,i) = 0 for all n < i) except when n = i where the LHS is ci and the RHS is 0.

This actually implies that

an = ncn +
n−1∑
j=1

cjan−j

for all n ∈ Z+ (taking cn = 0 for all n > k), which is exactly the same as Newton’s identities

pn = (−1)n+1nen +
n−1∑
j=1

(−1)j+1ejpn−j

where pn is the power sum symmetric polynomial
∑k

i=1 z
n
i . Therefore, by induction, an = pn for

all n, so the two solutions result in the same sequence an.
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Problem 6.

Ana has an n×n lattice grid of points, and Banana has some positive integers a1, a2, . . . , ak which

sum to exactly n2. Banana challenges Ana to partition the n2 points in the lattice grid into sets

S1, S2, . . . , Sk so that for all i ∈ {1, 2, . . . , k},

(i) |Si| = ai, and

(ii) the set Si has an axis of symmetry.

Prove that Ana can always fulfill Banana’s challenge.

Note: a line ` is said to be an axis of symmetry of a set S if the reflection of S over ` is precisely

S itself. Proposed by talkon

Solution. Let’s start with some terminology and notations. For collections C,D of positive integers,

and sets S of lattice points,

• C +D means the collection created by adding C and D. That is, an element e that appears

c times in C and d times in D will appear c+ d times in C +D.

• C ⊂ D means every element e ∈ C appears at least as much in D as in C.

• if C ⊂ D, then D−C is the collection created by subtracting C from D. That is, an element

e that appears c times in C and d times in D will appear d− c times in D − C.

• s(C) is the sum of elements of C counting multiplicity.

• EC , UC , PC are subcollections with EC +UC +PC = C where EC (‘even’) contains only even

numbers, UC (‘unpaired odds’) contains each odd number at most once, and PC (‘paired

odds’) contains each odd number an even times. Note that EC , UC , PC are uniquely defined

for each C.

• PC/2 is the collection that is exactly half of PC . In formal terms, PC/2 is the collection that

PC/2 + PC/2 = PC

• We call (S,C) colorable iff |S| = s(C) and it’s possible to partition S into k sets S1, . . . , Sk

so that (i) for each j, |Sj | = cj , and (ii) the set Sj has an axis of symmetry `j .

We’ll need the following easy lemma:

Lemma 1. If S is a set of lattice points with an axis of symmetry `S so that t points of S lies on `S ,

and C is a collection of positive integers summing to |S| with at most t odd numbers, then (S,C)

is colorable. Furthermore, there exists a (proper) coloring where all the axes `j coincide with `S .

Proof. Divide S into t isolated points on `S and (|S| − t)/2 pairs of points symmetric w.r.t. `S .

For each even cj , choose some cj/2 pairs, while for each odd cj , choose an isolated point and some

(cj − 1)/2 pairs. �
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We will now prove the following statement by induction on n, which clearly implies the problem:

Statement: Let Tn denote the n × n lattice grid {1, 2, . . . , n}2 and A = {a1, a2, . . . , ak} be a

collection of positive integers summing to n2. Then, (Tn, A) is colorable even with the following

added condition:

(iii) for any ak ∈ (EA + UA), the axis `k is the line x = y.

Proof. The base case n = 1 is obvious. Suppose that the above statement is true for all n 6 m−1.

We’ll show that it’s true for n = m as well.

I. Adjustment of A

If A contains only even numbers, the problem is trivial by Lemma 1. Else, we can add all

elements of EA to the maximal odd amax to create new collection A′ that contains only odd

elements. If EA 6= ∅, amax + s(EA) is always unique in A′ (and hence is in U ′A), hence by

Lemma 1, any proper coloring of A′ can be transformed to that of A as well, and the even

numbers will have x = y as the axis as required. So, from here onward, we’ll consider only

the case when A contains only odd numbers, i.e. EA = ∅. From now on, for brevity, we will

omit the subscript A in UA, PA.

For any two possible sets U,U ′ that |U | = |U ′| and s(U) = s(U ′), since the axis of all Sis

that ai ∈ U is always the same and by Lemma 1, it’s possible to recolor all points when U is

changed to U ′. Hence we can assume that U is of the form

{1, 3, 5, . . . , 2u− 3, 2u− 1} ∪W

where u is the maximum possible that makes W an empty set or {2u + 2γ − 1} for some

γ > 1. Note that any set V that s(V ) > |V |2 can be transform to that form.

Now, let pmax be the largest element in P/2. If pmax > 2u + 3, we can change the pair

pmax, pmax from P to 2u+1, 2pmax−(2u+1) making them both new distinct unique members,

and so belong to set U ′ of new collection. We’ve the following cases

• If W is an empty set, s(U ′) = u2 + 2pmax ≥ u2 + 4u+ 6, |U ′| = u+ 2.

• If W = {2u+ 2γ− 1}, s(U ′) = u2 + (2u+ 2γ− 1) + 2pmax ≥ u2 + 6u+ 9, |U ′| = u+ 3.

In both cases, we get s(U ′) ≥ |U ′|2, hence we can transform it to the above form. In this

new collection, the new maximal odd in P/2 is at most pmax, and the new 2u′ − 1 of U ′ is

more than the old 2u− 1, so this reduces the value pmax − (2u− 1). Hence, we can make an

additional assumption that pmax 6 2u+ 1.

So, now our situation reduces to when A is in this form:

1 3 · · · 2u− 1 2u+ 1 2u+ 3 2u+ 5 · · ·
U / / · · · / ∅ ∅ or only 2u+ 2γ − 1

P/2 maybe ∅
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II. We list some possible ways to reduce to a smaller case for induction

Lemma 2. If there exists an odd integer w, and collections R,X of odd integers such that

(a) R ⊂ P/2 and 2R+X ⊂ A,

(b) |R| 6 m− 1 and |X| = w, and

(c) 2s(R) + s(X) > w(2m− w) > 2s(R) + 2w − 1,

then the Statement is true for (Tn, A).

Proof. Consider the above figure (note that squares in the figure represent points), and use

this procedure:

Step 1. Use the lemma to put a copy of R on the yellow points, using the horizontal black line

as the axis.

Step 2. Use the lemma to put the other copy of R on the mirroring green points, using the

vertical black line as the axis.

Step 3. To each odd in X, assign a point each on the red diagonal.

Step 4. Assign leftover pairs of points (with each pair symmetric w.r.t the line x = y) to a

random odd in X. Repeat this until all points in the figure (points with x > m − w or

y > m− w) are assigned.

After the procedure, all odds in R are used up, and all odds in X will have been reduced to

evens. Hence any unused member of U is still in the new U for n = m− w. Now apply the

inductive hypothesis and we’re done. �

Corollary 3. (w = 1 case of Lemma 2.) If there exists o ∈ A and a collection R that

(a) R ⊂ P/2 and 2R+ {o} ⊂ A,

(b) s(R) 6 m− 1, and

(c) 2s(R) + o > 2m− 1,

then the Statement is true for (Tn, A).

Lemma 4. If there is a collection {p, p, o1, o2} of odd numbers which is a subcollection of A

and satisfies 2p+ o1 + o2 > 4m− 4 then the Statement is true for (Tn, A).
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Proof. Put the two copies of p on the border on the (1,m) and (m, 1) corners then assign

(1, 1), (m,m) to o1 and o2 respectively. Use pairs left from o1, o2 to fill the whole border. Any

leftover are even and covered by the inductive hypothesis. �

III. We consider a certain maximal subcollection of P/2

Consider a subcollection Q ⊂ P/2 that maximises s(Q) < m. Let t = m − s(Q). We make

the following observations:

• If there’s an element abig > 2t − 1 in A − 2Q, we can use Corollary 3 with (o,R) =

(abig, Q). Else, all elements in U are at most 2t− 3, which gives

2t− 3 > 2u(+2γ)− 1 =⇒ t > u(+1) + 1 = |U |+ 1.

• If there’s an element asmall < t in P/2 − Q then Q + {asmall} should be Q instead, a

contradiction. Hence, all elements in P/2−Q are at least t.

IV. We finish the problem.

First, we divide the possible value of t into two cases.

Case 1: t > m/2. Since t > m − t, if P/2 contains any element a that t < a < m, the set

{a} must be Q instead, a contradiction. Hence all elements in P/2−Q are at least m. We,

then, have the following cases:

• If P/2 is empty set then it follows that there are at most m odd numbers in A = U then

Lemma 1 finish the problem.

• If P/2 contains at least two numbers at least m then we can use Lemma 4.

• Else P/2−Q contain at most one element which must be less than 2t− 1, this gives

s(P/2) 6 (m− t) + (2t− 3) = m+ t− 3 6 2m− 4 =⇒ s(P ) 6 4m− 8,

so s(U) > m2 − 4m + 8. If U contains no element that is at least 2m − 1, we get

s(U) 6 1 + 3 + 5 + ...+ (2m− 3) = (m− 1)2. But s(U) ≡ m2 (mod 2), this means |U |
can’t be m−1, and so s(U) 6 (m−1)2− (2m−5) = m2−4m+4 (in case that 2m−3

is equal to 2u+ 2γ − 1), contradiction with s(U) > m2− 4m+ 8. Hence U contains an

element a that is at least 2m− 1. We, then, use Corollary 3 with (o,R) = (a, ∅).

Case 2: t 6 m/2. We divide into further subcases based on |U | and pmax. Recall from I.

that we have pmax 6 2u+ 1 6 2|U |+ 1.

When pmax 6 5 or when (|U |, pmax,m) = (3, 7, 8), it is not hard to check that in these cases

we either have enough 5’s to use Lemma 2 with w = 5 and R,X containing only 5’s, or can

use Corollary 3.
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In all other cases, we can use Lemma 2 as follows:

Case w X R

|U | odd, pmax 6 (|U | − 1)2 + 1 |U | U

see below

|U | even, pmax 6 (|U | − 2)2 + 1 |U | − 1 U − {1}
(|U |, pmax) = (3, 7),m > 9 5 U + {7, 7}
(|U |, pmax) = (4, 7) 5 U + {7, 7} − {1}
(|U |, pmax) = (4, 9) 5 U + {9, 9} − {1}
(|U |, pmax) = (5, 11) 7 U + {11, 11}
(|U |, pmax) = (6, 11) 7 U + {11, 11} − {1}
(|U |, pmax) = (6, 13) 7 U + {13, 13} − {1}

To create R, we randomly choose an element from F = P/2−Q− (P/2∩X) (named F for

’finally the end of the solution is near’) to put in R until s(R) > w(2m−w)−s(X)
2 then show

that it’s in the range in condition (c) of Lemma 2. The constraints we need to verify is that

maxF 6
s(x)− (2w − 1)

2
+ 1

and

s(F ) + s(X) > w(2m− w).

One can check that for the cases in the table above, these equations hold, using the facts that

maxF 6 pmax, m > 2t > 2|U |+ 2, and s(F ) + s(X) > m2 + (−1)− 2s(Q), with (−1) only

in cases that we removed {1} from U . �

Comments. 1. The following, due to @DVDthe1st, is a simple solution for odd n:

Roughly speaking, we can WLOG all ai odd (since we can always pair even terms with any odd

one, then extract it out later via symmetry). Since 1 + 3 + ... + (2n − 1) = n2, there are at most

n distinct values. Out of all the distinct values, pick out one ai from those with an odd number of

such values (call this set S) and pair the remaining. Now, note the n cells along the middle row.

For each ai in set S, we split it by putting one cell on the middle row, and then we aim to place
ai−1
2 in both the top half and the bottom half. If |S| < n, we add in pairs of equal ai until the

middle row is used up entirely. The remaining pairs we allocate one each to the top half and the

bottom half. So it becomes the problem of splitting the top half and bottom half into a new set of

ai, and we can somewhat induct this.

Upon further thoughts, my solution for P6 can be extended to all odd n. Essentially, we need

to assume that the extra ai that were used on the middle row are maximal, so if we use 1’s then

the remaining pairs are all 1’s and the inducive step is trivial. Otherwise, we realise that the split

ai parts don’t have to be symmetric within the top half, so they become essentially ”spares”, which

we can use to eliminate one row if we so wish.

2. The above idea can be generalized to prove that the result is true when n× n is changed to

m×n for m > n and n odd. It’s also possible that a full solution to the problem can be found from

this idea.
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Results

In the end, a total of 12 users submitted solutions. Here are the scores, with usernames removed

for anonymity. A score of − indicates that the user had not submitted a solution for that problem.

Rank P1 P2 P3 P4 P5 P6 Σ

1 7 7 7 7 7 − 35

2 7 7 2 7 7 1 31

3 7 7 − 7 6 3 30

4 0 7 7 7 6 1 28

5 − 7 7 7 5 − 26

6 − 7 − 7 6 − 20

7 − 7 − 3 7 − 17

8 5 7 − − − − 12

9 − − − 7 − − 7

9 − 7 − − − − 7

11 0 − − − 6 − 6

12 0 − − − − − 0

Σ 26 63 23 52 50 5 219

Avg. 2.17 5.25 1.92 4.33 4.17 0.42 18.25

Final Remarks

InfinityDots MO 2 has concluded. Thanks to everyone who has been a part of the contest.

Problem proposers: TacH, talkon, tastymath75025, ThE-dArK-lOrD.

PSC Members: ArseneLupin, Awien, Continuum, Diamondhead, Gems98, HimeZ, Mr-T19, TacH,

talkon, ThE-dArK-lOrD.

Graders and Outreach: TacH, talkon, ThE-dArK-lOrD.

Test-solvers: CantonMathGuy, v Enhance.

Sign-ups: ABCDE, ac dc1969, adhikariprajitraj, algebra star1234, Allen4567, anantmudgal09, AnArtist,

Ankoganit, Assmit, atmchallenge, ayan.nmath, B.J.W.T, bobthesmartypants, CinarArslan, den thewhitelion,

don2001, Electron Madnesss, enhanced, fas123456, fastlikearabbit, funstar007, futurestar, green dog 7983,

Hamel, hansu, hua1729, hydrogenhelium, Kayak, kenricksfollower, Ld minh4354, little-fermat, lminsl,

lucasxia01, MarkBcc168, Mate007, Math-Ninja, math90, MATHEMATICS1729, Matir, MEGAKNIGHT,

mickeydomath, MNJ2357, monsterDJ, navi 09220114, nikolapavlovic, Omeredip, Omsai, p square,

pieater314159, pro 4 ever, quangminhltv99, Qwertyphysics, rafayaashary1, randomusername, rmtf1111,

rterte, sa2001, Samuel, SAUDITYA, shinichiman, SHREYAS333, smy2012, Supercali, Superguy,

tenplusten, TheDarkPrince, TheMathsBoy, toto1234567890, Tumon2001, valikk202, william122,

Wizard 32, and all private sign-ups.

This report is compiled by talkon.
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