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Problem 1. We have a deck of mn ≥ 3 cards. A weird shuffle is a process of shuffling a
deck of cards following these steps:

1. Pull out the first m cards of the deck, making a pile. Repeat this until we get n piles.

2. Arrange the new deck by placing the top card of pile 1 to the bottom of the new deck,
following by the top card of pile 2, and that of pile 3. Continue doing this until placing
the top card of the pile n, and then go back to that of pile 1. Repeat these processes until
the cards in those n piles run out.

Show that the deck will return to the initial position in at most mn− 1 weird shuffles.

Solution. Call the positions of cards from top to bottom 0, 1, 2, . . . ,mn − 1. The top- and
bottom-most cards will always switch places, so they will return to the initial position in 2
shuffles.

Now suppose that a card start at position k 6≡ 0 (mod mn − 1). Let k = am + b where
0 ≤ a ≤ n− 1 and 0 ≤ b ≤ m− 1. We will claim that after a weird shuffle, the card ends up in
position −nk (mod mn− 1).

After the first step, this card will be the b + 1-th card from top in the a + 1-th pile.
Therefore after the second step, it will be the bn + a + 1-th card from bottom - which is
position k′ = mn − (bn + a + 1), which satisfy k′ = mn − (bn + a + 1) ≡ −bn − anm ≡ −nk
(mod mn− 1) as required.

Since gcd(n,mn − 1) = 1, after t = φ(mn − 1) rounds, the card in starting position k 6=
0,mn − 1 will end up in position (−n)tk ≡ k 6≡ 0 (mod mn − 1), which must be the starting
position - so after φ(mn − 1) rounds, the cards in position 1 to mn − 2 will return to their
respective position.

Therefore within lcm(2, φ(mn − 1)) shuffles, the deck will return to the initial position. If
mn− 1 = 2 then lcm(2, φ(mn− 1)) = 2 ≤ mn− 1. Else 2 | φ(mn− 1) so lcm(2, φ(mn− 1)) =
φ(mn− 1) < mn− 1. �
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Problem 2. Determine all polynomials f with integer coefficients such that there exist an
infinite sequence a1, a2, a3, . . . of positive integers with the property: for all n ∈ N, the sum of
any f(n) consecutive terms of this sequence is divisible by n + 1. (This requires f(n) > 0 for
all n.)

Solution. The necessary and sufficient condition is f(−1) = 0, in other words, f(x) =
(x + 1)g(x) for some g(x) ∈ Z[x]. The infinite sequence of 1 serves as an example of the
sequence we want.

Now we assume, for the contrary, that f(−1) 6= 0 and there is a sequence of positive integers
{an}∞n=1 satisfying with the condition.

Lemma. If f(−1) 6= 0, then there is a positive integer a such that f(x) and f(ax + a − 1)
have no common factor.

Proof. Assume S is a set of all roots of f(x). Since f(x) 6≡ 0, S is finite. And because
−1 6∈ S, we can find a positive integer a such that S ∩ {x+1−a

a | x ∈ S} = ∅. Therefore f(x)
and h(x) = f(ax+ a− 1) have no common root. So their gcd is 1 as desired. �

Back to the problem, by Lemma, we have a positive integer a such that f(x) and f(ax+a−1)
have no common factor, so there exists A(x), B(x) ∈ Z[x] with positive leading coefficient and
positive integer c such that either A(x)f(x) − B(x)f(ax + a − 1) ≡ c or B(x)f(ax + a − 1) −
A(x)f(x) ≡ c. Let T = a1 + a2 + · · · + ac > 0. Taking large enough value k ∈ Z+ such that
A(k) > 0, B(k) > 0, and k > T , we have A(k)f(k)−B(k)f(ak + a− 1) = c or −c.

For the case A(k)f(k) − B(k)f(ak + a − 1) = c, since k + 1 divides the sum of any f(k)
consecutive terms of the sequence, it also divides the sum of any A(k)f(k) consecutive terms
of the sequence. Hence k + 1 | a1 + a2 + · · · + aA(k)f(k). Similarly, we have k + 1 | ak + a |
ac+1 + ac+2 + · · ·+ ac+B(k)f(ak+a−1). Since B(k)f(ak + a− 1) + c = A(k)f(k), this means that
k+ 1 | a1 +a2 + · · · ac = T which contradicts the fact that k > T . The other case can be proved
similarly.

Hence we can conclude that the assumption f(−1) 6= 0 is false. �
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Problem 3. Let 4ABC be a triangle with circumcenter O and orthocenter H. The line
through O parallel to BC intersect AB at D and AC at E. X is the midpoint of AH. Prove
that the circumcircles of 4BDX and 4CEX intersect again at a point on line AO.

Solution. First we will start with a lemma.

Lemma. If AH,AO cut (CEX) again at T,W both outside 4ADE then TW ⊥ AC.
Proof. Let V be the midpoint of AC, V X intersect AO at U . By some side-chasing (not

shown here) we have V C
V U = sinC

cosB = V X
V E , so U ∈ (CEX).

Note that from ∠BAH = ∠CAO we have (4AUX,AB) ∼ (4ATW,AC) where here
AB,AC denote straight lines. Since UX ‖ CH ⊥ AB, it follows that TW ⊥ AC.�

Let AH,AO cut (BDX) again at S,W ′. Similarly we have SW ′ ⊥ AB. Now from

AT =
AC ·AE
AX

=
AB · sin2B

AD ·AX · sin2C
= AS · sin2B

sin2C
,

we have

AW =
AT1
sinB

=
AT · sinC

sinB

and similarly

AW ′ =
AS1
sinC

=
AS · sinB

sinC
.

Hence AW = AW ′. Thus W = W ′, and so AO, (CEX) and (BDX) concur at W (= Z). �
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Problem 4. Given an acute triangle 4ABC with circumcircle ω and circumcenter O. The
symmedian through A intersects ω again at S 6= A. Point F is on AC such that BF ⊥ AS,
and point G is on ray BF such that BF × BG = BC2. Finally, let P be the point such that
�BGCP is a parallelogram.

Prove that OS bisects CP .

Solution 1. Let Y,Z be the reflections of C over O,S respectively and M the midpoint
of BC. We have ∠BZC = ∠MSC = ∠ACB. From ∠BPC = ∠BGC = ∠ACB, Z,P,B,C
are concyclic, hence ∠PZC = 180◦ − ∠PBC = 180◦ − ∠BCG = 180◦ − ∠BFC = ∠BFA. On
the other hand, we also have ∠Y ZC = ∠OSC = 90◦ − ∠SAC = ∠BFA, therefore Y, P, Z are
collinear, and by homothety OS must pass through the midpoint of CP . �

Solution 2. Let PB cuts (ABC) at X. We will prove that S is the antipode of X. Since
∠SBP = ∠CBP − ∠SBC = ∠BCG − ∠SAC = ∠BFC − ∠SAC = ∠(BF, SA) = 90◦. Now,
it is easily seen that 4XPC is similar to 4ACB ,from ∠BXS = ∠CAM where M is the
midpoint of BC from the property of symmedian, we then get that XS bisects CP . �

Solution 3. Reflect S, P over the perpendicular bisector of BC to M,N , and let MO ∩ ω =
{M,L}. Simple angle chasing to get 4BAF ∼ 4BLC so there exist a spiral similarity λ cen-
tered at B that sends 4BAF to 4BLC. Since FC

BF = CG
BC = CN

BC , we have λ(C) = N . Since

∠AML = angle of spiral sim; λ(
←−→
AM) =

←→
LM , so LM is median of 4BLN thus LM bisects

BN . Reflect back across perpendicular bisector of BC to get OS bisects CP . �
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Problem 5. Suppose that we draw t straight lines through an n × n table such that for
each unit square U in the table, at least one line passes through the interior of U .

Prove that t > (2−
√

2)n.

Solution. Let the center of the table be the origin so the top-right square has center
(
n−1
2 , n−12

)
.

We will ignore squares close to the corner and will only consider squares with centers (x, y) such
that |x|+ |y| ≤ n−k−1, where the nonnegative integer k will be chosen later. By doing this we
are ignoring at most 4(1 + 2 + · · ·+ k) = 2k(k+ 1) squares, so there are at least n2 − 2k(k+ 1)
squares left. Also, each line can cut through at most 2n − 1 − 2k (remaining) unit squares.
Therefore the number of lines is at least⌈

n2 − 2k(k + 1)

2n− 1− 2k

⌉
.

Choose k = b(1− 1√
2
)nc. So k = (1− 1√

2
)n− α for some α ∈ [0, 1), and there are at least⌈

n2 − 2((1− 1√
2
)n− α)((1− 1√

2
)n+ 1− α)

2n− 1− 2(1− 1√
2
)n+ 2α

⌉

lines, which is equal to⌈
(2
√

2− 2)n2 + (2α− 1)(2−
√

2)n+ 2α(1− α)√
2n+ (2α− 1)

⌉

and this is clearly more than (2−
√

2)n, because α(1− α) > 0. �
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Problem 6. Given a polynomial P ∈ R[x] with odd degree. A real number x is called
orbiting if the sequence

x, P (x), P (P (x)), . . .

is bounded. If all orbiting numbers are rational, prove that there are finitely many (or zero)
orbiting numbers.

Solution. First we will prove the case degP = 1.
Let P (x) = ax + b. When a = −1 or a = 1 and b = 0 then P (P (x)) = x, thus every real

number r is orbiting, while if a = 1 and b 6= 0 then every real number r is not orbiting, so
these two cases are trivial. If |a| 6= 1, define the function f(x) = x − b

1−a . It can be shown

that f(P (x)) = af(x), therefore if |a| > 1 only b
1−a is orbiting, and if |a| < 1 then all reals are

orbiting. In all cases, either finitely many numbers are orbiting or all real numbers are orbiting,
so we have proven the case degP = 1.

Henceforth we will assume that degP = n ≥ 3. We will divide our proof for that case into
four parts, denoted by P1-P4.

P1: the polynomial P has rational coefficients
Since r being orbiting implies P (r) is too, P (r) must be rational for any orbiting r. We

choose n+ 1 orbiting rationals r1, r2, . . . , rn+1 and let P (ri) = si ∈ Q for each i. Since P is the
unique polynomial with deg ≤ n satisfying P (ri) = si for each i, by the Lagrange interpolation
formula, P (x) must be the polynomial

n+1∑
i=1

si
∏
j 6=i

x− xj
xi − xj

which clearly has rational coefficients. �

P2: there exists an interval [a, b] such that all orbiting r lies in it.
Let S be the set containing the (at most 2n) roots of |P (x)| = 2|x|. S must be nonempty,

as the polynomial P (x)− 2x have odd degree and thus has a root.
Let u = minS and v = maxS. Choose [a, b] = [−max{|u|, |v|},max{|u|, |v|}]. All numbers

not in [a, b] will satisfy |P (x)| > 2|x| or else |P (x)| ≤ 2|x| for x→∞ or x→ −∞ which cannot
be true as |P ′(x)| → ∞. Therefore if r is not in [a, b], |P (r)| > 2|r| thus P (r) is also not in
[a, b]. This can be continued indefinitely to obtain |P k(r)| > 2k|r| for all positive integers k,
thus r cannot be orbiting. Hence all orbiting numbers lies in the interval. �

For P3, we will define some notations: for each rational r 6= 0, pr and qr are the unique
integers satisfying qr > 0, gcd(pr, qr) = 1 and r = pr

qr
. For each prime t define the valuation

νt(r) as νt(pr)− νt(qr). When r = 0, define p0 = 0 and q0 = 1 and νt(0) = +∞. We note that
the valuation ν has a property: if νt(r1) 6= νt(r2) then νt(r1 + r2) = min{νt(r1), νt(r2)}, and if
νt(r1) = νt(r2) then νt(r1 + r2) ≥ νt(r1).

P3: there exists an integer N such that if qr > N then qP (r) > qr.

Let P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 where each ai is rational. If νt(ai) 6= 0 for
some i, then we call the prime t poisoned.

Let T be the set of poisoned primes, which is clearly a finite set. For each t ∈ T , let mt be
a positive integer big enough such that

−nmt + νt(an) < min{−(n− 1)mt + νt(an−1),−(n− 2)mt + νt(an−2), · · · , νt(a0),−2mt}
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All positive integers greater than mt will also have the same property. This means that if
νt(r) = −m (that is, νt(qr) = m) with m ≥ mt then

νt(an−1r
n−1 + · · ·+ a1r+ a0) ≥ min{−(n− 1)mt + νt(an−1),−(n− 2)mt + νt(an−2), · · · , νt(a0)}

> −nm+ νt(an) = νt(anr
n),

implying that νt(qp(r)) = −νt(P (r)) = −min{νt(anrn), νt(an−1r
n−1 + · · · + a1r + a0)} > 2m.

Note also that for each prime p dividing qr and not in T , we have νt(qp(r)) = −νp(P (r)) =
nνp(qr) > 2νp(qr).

Now we show that the integer

N =
∏
t∈T

t2mt

satisfy the required condition. For each integer k, let

f(k) =
∏

t∈T, t|k, νt(k)<mt

tνt(k).

It is easily seen that f(k) <
∏
t∈T t

mt <
√
N , and that for each prime p dividing qr

f(qr)
,

νp(qP (r)) > 2νp(qr). Thus for each qr > N ,

qP (r) ≥
∏

p| qr
f(qr)

pνp(qP (r)) >
∏

p| qr
f(qr)

p2νp(qr) >

(
qr

f(qr)

)2

>

(
qr√
N

)2

> qr. �

P4: There are finitely many orbiting numbers r.
Since n = degP is odd, P is onto to R. We will define the function g : R→ R as follows: for

each y, g(y) is the least-valued root of P (x) = y. Since r is orbiting, gk(r) is also orbiting for all
positive integer k. If qgl(r) > N for some l ≥ qr −N , then qr = qP l(gl(r)) > N + l ≥ qr, which is
impossible, thus qgl(r) ≤ N for all l ≥ qr −N . There are finitely many rational numbers s, say

A numbers, that satisfy s ∈ [a, b] and qs ≤ N , and for all l ≥ qr −N , gl(r) is one of those (as it
is orbiting and have qgl(r) < N. By the pigeonhole principle, two of gm(r), gm+1(r), . . . , gm+A(r)

are equal, where m = qr − N . Let these two be gk1(r) and gk2(r), with k1 > k2. The infinite
sequence gk1(r), P (gk1(r)), P (P (gk1(r))), . . . will have the k2 − k1 + 1th term equal to the first
term, and therefore must be periodic with period k1−k2. As r = P k(gk1(r)) is in this sequence,
P k1−k2(r) = r. If qr > N then qPk1−k2 (r) > qr which is a contradiction, thus qr ≤ N . Therefore
r must also be one of the A rational numbers such that r ∈ [a, b] and qr ≤ N , so there are at
most A orbiting numbers. This ends our proof. �


